A Zenith

Fluid

Smart Contract
Security Assessment

VERSION 1.1

AUDIT DATES: June 24th to July 3lst, 2025

AUDITED BY: 1Mooo
kriko.eth
shaflow?2

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 11
Contents Introduction 2
1.1 About Zenith 3

1.2 Disclaimer 3

1.3 Risk Classification 3

Executive Summary 3

2.1 About Jupiter 4

2.2 Scope 4

2.3 Audit Timeline 5

2.4 lIssues Found 5

2.5 Audit Note 5

Findings Summary 5

Findings 9

4] Critical Risk 10

4.2 High Risk 25

4.3 Medium Risk 30

4.4 Low Risk 53

4.5 Informational 91

A Zenith 2

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Introduction

1.1 About Zenith

Zenith assembles auditors with proven track records: finding critical vulnerabilities in public
audit competitions.

Our audits are carried out by a curated team of the industry’s top-performing security
researchers, selected for your specific codebase, security needs, and budget.

Learn more about us at htfps:/zenith.security.

1.2 Disclaimer

This report reflects an analysis conducted within a defined scope and time frame, based on
provided materials and documentation. It does not encompass all possible vulnerabilities
and should not be considered exhaustive.

The review and accompanying report are presented on an "as-is" and "as-available" basis,
without any express or implied warranties.

Furthermore, this report neither endorses any specific project or team nor assures the
complete security of the project.

1.3 Risk Classification

SEVERITY LEVEL IMPACT: HIGH IMPACT: MEDIUM IMPACT: LOW
Likelihood: High Critical High Medium
Likelihood: Medium High Medium Low
Likelihood: Low Medium Low Low

A Zenith

https://zenith.security

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

) 2.1 About Jupiter

. Jupiter Lend is shaping the future of finance on Solana by Leveraging Fluid's architecture, a
Executive Summary two-layer architecture that separates liquidity to deliver greater capital efficiency.

2.2 Scope

The engagement involved a review of the following targets:

Target fluid-contracts-solana

Repository https:/github.com/Instadapp/fluid-contracts-solana
Commit Hash d2f9a01fe8f63a4cb9db1035e4b97cbc806a71ed

Files programs/*

A Zenith 4

https://github.com/Instadapp/fluid-contracts-solana

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

2.3 Audit Timeline

June 24th, 2025 Audit start
July 31st, 2025 Audit end
August 14th, 2025 Report published

2.4 Issues Found

SEVERITY COUNT
Critical Risk 6
High Risk 3
Medium Risk 16
Low Risk 28
Informational 12
Total Issues 65

2.5 Audit Note

At the time of the engagement, the codebase was still in early development stage with the
client's review process ongoing in parallel.

Some issues identified by the auditing feam during the audit were also identified by the
development team internally and in parallel.

A Zenith 5

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
3 ID Description Status
C-1 Incorrect bit masks break the branching algorithm Resolved
Findings Summary

C-2 Seed collision in vault accounts Resolved

C-3 Tick O is incorrectly handled as "no tick exists” Resolved

C-4 Attackers can use arbitrary TokenReserve accounts to un- Resolved
dermine the protocol

C-5 tick_id_data_after_operate account is missing a vault_id Resolved
check

C-6 Price calculation overflow can cause asset underpricing Resolved

H-1 Transaction account count limits will break the vault Acknowledged

H-2 Full liquidation did not clear the position debt in the Resolved
fetch_latest_position function

H-3 absorb function fails due to double account borrow block- Resolved
ing liquidations

M-1 Meaning of liquidity.status is inverted Resolved

M-2 The reward_rate may be released incorrectly. Resolved

M-3 Potential overflow leading to DoS when calculating reward Resolved
rate

M-4 Wrong borrow rate may be used affer calls to up- Resolved
date_token_config()

M-5 Some Token-2022 extensions may break the protocol Acknowledged

M-6 Calls to update_user_borrow/supply_config() break ac- Resolved
counting

M-7 The vault’s reserved tokens may be insufficient to cover the Resolved
unclaimed tokens

M-8 Wrong oracle prices used for liquidations Resolved

M-9 calculate_new_token_exchange_price will revert if LRRM Resolved

reward start time is in the future

A Zenith

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

ID Description Status

M-10 Decreasing interest rates will DoS the system Resolved

M-11 The withdrawal gap feature incorrectly reduces amount Resolved
available for withdrawal by orders of magnitude

M-12 Use of global counters in PDA derivations will allow DOS Resolved

M-13 Overflow in debt calculation prevents position updates for Resolved
large borrowers

M-14 Positions above liquidation threshold after repayment may Resolved
delay other liquidations

M-15 Chain rollbacks may cause misconfiguration Resolved

M-16 Stale prices may allow loans using worthless collateral Resolved

L-1 The program initialization may be vulnerable to a front- Acknowledged
running attack

L-2 Using the deprecated transfer instruction may cause in- Resolved
compatibility with some tokens

L-3 The f_token metadata will not be initialized. Resolved

L-4 Compound interest deviation in borrow exchange price Acknowledged
calculation

L-5 No way to close and reclaim rent for some user-related ac- Resolved
counts

L-6 Incorrect behavior of checked_floor_div Resolved

L-7 Users may be unable to withdraw dust amounts Acknowledged

L-8 Some events may contain incorrect information Resolved

L-9 Missing a check in init_lending to ensure that the mint and Resolved
f_token_mint token programs are equal

L-10 User supplies and borrows can’t be paused independently Resolved

L-T1 Incorrect URI passed to Metaplex Resolved

A Zenith

FLUID

SMART CONTRACT SECURITY ASSESSMENT

VERSION 1.1

ID

L-12

L-13

L-14

L-15

L-16

L7

L-18

L-19

L-20

L-21

L-22

L-23

L-24

L-25

L-26

L-27

L-28

Description

Incorrect token_reserves_liquidity account for
init_lending() ix may require redeployment

The CLAIM token transfer_type does not support with-
drawing and borrowing to different users.

Missing default Pubkey checks

Borrow/supply magnification may be applied to exchange
price growth prior to vault creation

The withdrawal_cap is not capped at 100%

Vaults cannot work with mixed legacy/Token-2022 bor-
row/supply tokens

No way to change a vault’s authority

Admin configuration updates can cause limit calculation
discrepancies

Use of pause_user() prior to setting user configuration
breaks subsequent configuration

get_ticks_from_remaining_accounts() uses the wrong error
code when program ownership checks fail

add_debt_to_tick() never executes the initialization code
path

The governance signer may lose auth or guardian roles
Unrestricted lending program account in rewards transition

Prior period rewards may be lost if LRRM.start_rewards() is
called again

Open TODOs
Vector field sizes not validated when updating accounts
Internal errors are not converted to external ones

Typos

Status

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Acknowledged

Acknowledged

Resolved

Resolved

Resolved

Resolved
Resolved

Resolved

Resolved
Resolved
Acknowledged

Resolved

A Zenith

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

ID Description Status

[-2 Dead code Resolved

-3 Accounts need not be marked as mutable Resolved

[-4 Delayed reward distribution may temporarily prevent with- Acknowledged
drawals

[-5 The Operate instruction may be called with some accounts Resolved
that are not used.

[-6 Unused instruction accounts Resolved

[-7 Unused account fields waste rent Resolved

[-8 The init_token_reserve instruction does not check whether Resolved
the token decimals are supported

[-9 Misleading comments Resolved

[-10 Unhandled SKIP token transfer_type Acknowledged

[-11 There may not be enough user class enftries to support fu- Acknowledged
ture tokens

[-12 Rewards calculation does not credit interest-related TVL Resolved

growth

A Zenith

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

A

Findings

4.1 Critical Risk

A total of 6 critical risk findings were identified.

[C-T] Incorrect bit masks break the branching algorithm

SEVERITY: Critical IMPACT: High
STATUS: Resolved LIKELIHOOD: High
Target

® programs/vaults/src/module/user.rs

® programs/vaults/src/state/tick_has_debt.rs

Description:

In Rust, the bit shift operators have lower precedence than the arithmetic operators. This
means that 1 << 4 - 1 results in 00001000 rather than 00001111. The code that is
attempting to create a bit mask like the latter, is using syntax that creates the former. This
results in the bit mask not actually setting the lower bits, and instead sets only the indexed
bit. This has the effect of clearing lower ticks in the tick_has_debt data, which causes the
code that attempts to find the next pure tick, to return the incorrect result, breaking the
branching algorithm.

Recommendations:
Add parentheses around the shift operation.

Fluid: Resolved with @56d82546457...

Zenith: Verified.

A Zenith

10

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/module/user.rs#L690
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/tick_has_debt.rs#L97
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/56d8254645764dd2b188a046148365feca587fd7

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Critical IMPACT: High
STATUS: Resolved LIKELIHOOD: High
Target
[]
Description:

The seeds of the following account types in the vault program can collide with other
accounts of the same type:

® BranchData

® TickHasDebtArray

® TickData

® TickIdLiquidation

® UserPosition

® Mint (in InitPosition)

We'll demonstrate the issue on the BranchData account, although the principle applies to all
the mentioned account types.

#[account(
init,
payer = signer,
space = 8 + BranchData:: INIT_SPACE,
seeds = [BRANCH_SEED, vault_id.to_string().as_bytes(),
branch_id.to_string().as_bytes()],
bump
)]

pub branch: AccountlLoader<'info, BranchData>,

As we can see in the code, the seeds of the BranchData are built using two u16 and u32
parameters, which are first converted to String and then to bytes. This, however, means that
vault_id = 1 and branch_id = 11 would be converted to "1" and "11" in the string form,
hence [49] and [49, 49] in the bytes form, respectively. vault_id = 11 and branch_id =
1 would be converted to "11" and "1", meaning [49, 49] and [49] in the bytes form.

This means that the seeds of two different Branch accounts would be the same, hence

A Zenith

1

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/context.rs

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

producing the same PDA:

seeds 1: [[98, 114, 97, 110, 99, 1041, [49], [49, 491]
seeds 2: [[98, 114, 97, 110, 99, 1041, [49, 49], [49]]

This would lead to some instructions not being callable due to accounts being already
initialized. Additionally, this collision could allow users to access or modify accounts they
shouldn't control, leading to potentially disastrous scenarios.

Recommendations:

Consider converting the seed parameters to little-endian bytes with the to_le_bytes
method instead, and passing them to the seeds array using as_slice, which preserves the
binary format of the integers, avoiding collisions:

#[account (
init,
payer = signer,
space = 8 + BranchData:: INIT_SPACE,
seeds = [BRANCH_SEED, vault_id.to_string().as_bytes(), branch_id.to_

string().as_bytes()],

seeds = [BRANCH_SEED, vault_id.to_le_bytes().as_slice(), branch_id.to_le_
bytes().as_slice()],

bump
)1
pub branch: AccountLoader<'info, BranchData>,

For comparison, the same parameters used in the report would produce different seeds
(hence different PDASs):

seeds 1: [[98, 114, 97, 110, 99, 1041, [1, 0], [11, 0, 0, 0]]
seeds 2: [[98, 114, 97, 110, 99, 1041, [11, 0], [1, 0, 0, 0]]

Note that little-endian encoding is recommended here as it is the standard byte order used
throughout Solana for numerical data serialization.

Fluid: Resolved with and

Zenith: Verified.

A Zenith

12

https://github.com/Instadapp/fluid-contracts-solana/pull/40/commits/e617d03d4a62d8f2c6f88a374f480913c1595b71
https://github.com/Instadapp/fluid-contracts-solana/commit/3c50e0cb177db77491949b8a05380fed0cd04b25

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Critical IMPACT: High
STATUS: Resolved LIKELIHOOD: High
Target
[]
[]
Description:

The system incorrectly treats legitimate tick O positions as "no tick exists", causing
liquidation failures and corruption of the vault's risk management system.

Consider a position with 1000000000000 collateral and 999999999999 debt. The ratio of this
position is 281474976710655, and the get_tick_at_ratio function would return -1, which
means the actual tick increased by 1 would be 0. If the exchange price is 1e18, with supply
exchange price = 1112777777777, borrow exchange price = 1000000000000, and collateral
factor of 90%, the calculated tick comes to zero, meaning this is a valid and healthy
position, and the topmost tick will be set to zero. This means that even if the positions in
this vault become unhealthy, liquidation will become impossible due to the topmost tick
being zero.

When the topmost tick is legitimately set to O, all liquidation attempts become impossible
due to the validation check in the , which incorrectly treats
topmost_tick = @ as "no tick exists"

if vault_state.topmost_tick = 0 {
return Err(error! (ErrorCodes::VaultTopTickDoesNotExist));

}

Additionally, this creates a cascading corruption issue. When a legitimate tick O position is
created, the comparison if memory_vars.tick = top_tick becomes true, setfting
topmost_tick = 0. On the next operation, vault_state.get_top_tick() returns i32::MIN
because it converts stored O to 132 :: MIN. This means any subsequent position at tick -100,
-50, etc. will satisfy memory_vars.tick = i32::MIN and incorrectly become the new
"topmost" tick.

The issue stems from the codebase treating O as a sentinel value for "no tick exists" in the
get_top_tick()

A Zenith

13

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/module/user.rs
https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/vaults/src/state/structs.rs#L329
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/module/user.rs#L470-L472
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/vault_state.rs#L188-L194

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

pub fn get_top_tick(&self) — i32 {
if self.topmost_tick = 0 {
i32::MIN
} else {
self.topmost_tick

However, this behavior is incorrectly ported from the Solidity implementation, which
correctly distinguishes between these states using bit encoding. In the Solidity version, tick
= O is encoded as (sign=1, absolute=0) —> bif paftern = 4 (decimal) - passes check,
while "no tick exists" is encoded as (sign=0, absolute=0) (meaning negative zero) - bit
pattern = @ (decimal) = fails check.

Similarly, In set_branch_data_in_memory, if connected_minima_tick is O, it is freated as an
invalid fick. This is inappropriate.

pub fn set _branch_data_in_memory(&mut self, branch: &Branch) — Result<()> {

self.minima_tick = self.data.connected_minima_tick;

if self.minima_tick = 0 {
self.minima_tick = i32::MIN;

}

ok(())

For example, suppose a liquidation occurs and the liquidation tick happens to be O. The
branch's tick would then be set to O. If the collateral price later recovers, a user may open a
position with a tick higher than top_tick, causing the branch to be created and connect o
the previous branch with a tick of O. As a result, the current branch’s
connected_minima_tick becomes O.

If the collateral price drops again and another liquidation occurs, with the liquidation tick <
0O, then after liquidating the top_tick, the connected branch will not be liquidated because
its minima_tick is set fo 132 :: MIN. However, the connected branch should in fact be
liquidated, since it is at tick = O, which is greater than the liquidation fick.

Recommendations:

Consider updating the validation logic to use 132 :: MIN as the "no tick exists" sentinel value:

A Zenith 14

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

if vault_state.topmost_tick = 0 {
if vault_state.topmost_tick = i32::MIN {
return Err(error! (ErrorCodes::VaultTopTickDoesNotExist));

Additionally, ensure consistent state management by updating the functions in
vault_state.rs

pub fn reset top_ tick(&mut self) {
self.topmost_tick = 0;
self.topmost_tick = i32::MIN;

pub fn set_top_tick<'info>(
// ... snippet

if new_top_tick = i32::MIN {

// Last user left the vault
self.topmost_tick = 0;
self.topmost_tick = i132::MIN;

self.reset _branch_liquidated();

// ... snippet

pub fn get top tick(&self) -> i32 {
if self.topmost_tick = 0 {
i32::MIN
} else {
self.topmost_tick
self.topmost_tick

}

Lastly, the init_vault_state function should set the fopmost tick to the 132 :: MIN value.

Fluid: Resolved with , , ,and

A Zenith 15

https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/8bd3005b3d1eb6fd5707273e1504a8918f387920
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/ee28bc1d4b6ab179665cd4c7547d61d0493cada7
https://github.com/Instadapp/fluid-contracts-solana/pull/59/commits/09e1c4aff71fe59e17c5ebb9a90abf27ef3bc360
https://github.com/Instadapp/fluid-contracts-solana/pull/60/commits/8ecdb86a39bb1fe2f0b68f7def474418968bee48

FLUID

SMART CONTRACT SECURITY ASSESSMENT

VERSION 1.1

Zenith: Verified.

A Zenith

16

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Critical IMPACT: High
STATUS: Resolved LIKELIHoOD: High
Target
[]
[]
Description:

The operate function accepts arbitrary TokenReserve accounts for both supply and borrow
tokens without validating that these accounts correspond to the correct tokens for the vault.
This allows attackers to manipulate the supply exchange price used in collateral factor
calculations by providing a TokenReserve account from a different, more valuable token.

The token reserve accounts are not validated against the vault's configured tokens in the
Operate context:

#[account(mut)]
pub supply_ token_reserves_liquidity: AccountLoader<'info, TokenReserve>,
#[account (mut)]
pub borrow_token_reserves_liquidity: AccountlLoader<'info, TokenReserve>,

The load_exchange_prices function blindly trusts these user-provided accounts:

let supply_token_reserves = supply_token_reserves_account.load()?;
let borrow_token_reserves = borrow_token_reserves_account.load()?;
//
let (liq_supply_ex_price,)

= supply_token_reserves.calculate_exchange prices()?;
let (_, lig_borrow_ex_price)

= borrow_token_reserves.calculate_exchange_prices()?;

While these accounts are expected to be validated when calling operate on the Liquidity
program, during borrow-only operations, only the borrow token reserve is checked by the
liquidity program, leaving the supply token reserve unchecked. However, the vault still
loads the exchange price from the unchecked supply token reserve for collateral factor

A Zenith 17

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/context.rs#L348-L351
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/module/user.rs#L210-L219

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

calculations.

An attacker can exploit this by providing a TokenReserve account from a different token as
the supply_token_reserves_liquidity. If the vault's legitimate collateral TokenReserve has
a supply exchange price of 1e12 and the attacker provides a TokenReserve from a different
token with a supply exchange price of 1.5e12, this inflates the supply exchange price used
in the collateral factor calculation, allowing the attacker to borrow 50% more than their
collateral should support.

The collateral factor calculation uses exchange_rate =
exchange_rate.safe_mul(supply_ex_price)?.safe_div(borrow_ex_price)?;. By
substituting a higher supply_ex_price from a different token's reserve, the attacker
artificially inflates the exchange_rate, which increases the ratio_at_cf threshold, allowing
excessive borrowing.

This enables an attack where the attacker can over-borrow using inflated exchange prices,
then liquidate the over-leveraged position (creating bad debt for the protocol), and repeat
the process with new positions to drain protocol funds.

Similarly, in the 1iquidate instruction, the TokenReserve account does not undergo a mint
matching check because the program expects this to be verified during the CPI call.

#[derive (Accounts)]
pub struct Liquidate<'info> {

#[account(mut)]
pub supply_token_reserves_liquidity: AccountlLoader<'info, TokenReserve>,
#[account(mut)]
pub borrow_token_reserves_liquidity: AccountlLoader<'info, TokenReserve>,

However, there is a special case in the 1iquidate instruction: a user can pass in debt_amt =
0 to choose to settle only bad debt. In this case, the instruction exits immediately after
settling the bad debt, and no CPI call occurs. Therefore, the correctness of the passed-in
TokenReserve account cannot be guaranteed.

pub fn liquidate<'info>(
ctx: Context<'_, ', 'info, 'info, Liquidate<'info>>,
debt_amt: u64,

A Zenith 18

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

col per_unit _debt: u64, // min collateral needed to receive per unit of
debt paid back in 1e18
absorb: bool,
remaining_accounts_indices: Vec<u8>, // first index is sources, second
is branches, third is ticks, fourth is tick has debt
) — Result<(u128, u128)> {
/] ...
// Call absorb function to handle bad debt above max limit
// @dev passing vault state as a mut reference, that means it
will be updated inside the absorb function
self::absorb(
&mut vault_ state,
&tick_accounts,
&tick_has_debt_accounts,
&tick_has_debt_indices,
&branch_accounts,
&mut ctx.accounts.new_branch,
memory_vars.max_tick,
)%
if debt_amt = 0 {
// If debt_amt was 0, we just wanted to absorb
return Ok((0, 0));

I oc

A malicious actor can choose to pass in debt_amt = 0 along with a
borrow_token_reserves_liquidity account whose mint does not match. If the
liq_borrow_ex_price of this account is higher than the actual price, it will cause the
calculated vault_borrow_ex_price to be overstated, which ultimately results in a lower
calculated max_tick. This causes ticks that should not be classified as bad debt to be
treated as bad debt and seftled, leading fo users’ loss of funds.

Recommendations:

Add constraints to ensure supply_token_reserves_liquidity and
borrow_token_reserves_liquidity correspond to the vault's configured supply and
borrow tokens:

#[account(
mut,
constraint = supply_token_reserves_liquidity.load()?.mint
= vault_config.load() ?. supply_token

A Zenith

19

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

)]

pub supply_ token_reserves_liquidity: AccountLoader<'info, TokenReserve>,

#[account (
mut,

constraint = borrow_token_reserves_liquidity.load()?.mint
— vault_config.load() ?.borrow_token

)]

pub borrow_token_reserves_liquidity: AccountlLoader<'info, TokenReserve>,

Fluid: Resolved with @942392a5913d... and @7/c235c9{8bf...
Zenith: Verified.

A Zenith 20

https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/94a39a5913db022dd4b1e9d6a184ffa2430da1af
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/7c235c9f8bf2355b08f7084629b44d6f6a114520

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Critical IMPACT: High
STATUS: Resolved LIKELIHOOD: High
Target
[]
Description:

In the Operate instruction, the tick_id_data_after_operate account is missing a vault_id
check in verify_operate

pub fn verify_operate<'info>(ctx: &Context<'_, '_, 'info, 'info,
Operate<'info>>) — Result<()> {
/] ...

let tick_id data = &ctx.accounts.tick_id_data;
if tick_id_data.vault_id = vault_state.vault_id {
return Err(error! (ErrorCodes::VaultInvalidVaultId));

let new_branch = &ctx.accounts.new_branch.load()?;
if new_branch.vault_id = vault_state.vault_id {
return Err(error! (ErrorCodes::VaultInvalidVaultId));

0k (())

This allows a malicious actor fo pass in a tick_id_data_after_operate account with a
mismatched vault_id, causing the post tick liquidation history to be written into the
TickIdLiquidation account of another vault.

This can lead to loss of funds for other users. Because the historical position update

involves a connection_factor of O, it results in a division-by-zero panic.

let mut current_connection_factor:
u128 = connection_factor.cast()?;

A Zenith 21

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/utils/validate.rs#L147

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

// ...
} else {
// If branch is not merged, the main branch it's connected to

then it'll have minima debt factor
// position debt = debt * base branch minimaDebtFactor /
connectionFactor
let branch_min_debt_factor:
u128 = branches[current_branch_idx]
.load()?
.get_branch_debt_factor()?;

position_raw_debt = mul div_normal(
position_raw_debt,
branch_min_debt_ factor.cast()?,
@> current_connection_factor.cast()?,
)?;

Recommendations:

Check whether the vault_id of the tick_id_data_after_operate account matches in the
verify operate function.

Fluid: Resolved with @f84292a6¢1f...
Zenith: Verified.

A Zenith

22

https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/f84a92a6c1f99b6f1a6e40a84e909b583466db1d

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Critical IMPACT: High
STATUS: Resolved LIKELIHoOD: High
Target
[]
Description:

The exchange rate of assets is in 18 decimals precision, since the rate is initially set to 118 (
), meaning that get_exchange_rate_for_hop must return prices in 18 decimals
precision.

The Pyth oracle, for example, returns price along with the exponent value, which is the
decimal precision for that price feed. We assume that this is handled with proper
multiplier and divisor values, and the rate is properly converted to 18 decimals

However, if we consider a BTC/USD price feed from Pyth, the returned price at the time of
writing is 11833017161230, with exponent = -8, meaning 8 decimals. This price should
therefore be multiplied by 1e10 in order to get it to 18 decimals, yielding
118330171612300000000000.

This, however, means that the
rate = rate

.saturating_mul(current_hop_rate)
.saturating_div(10u128.pow(RATE_OUTPUT_DECIMALS));

would overflow, but since saturating_mul is used, it would not fail but saturate at
u128:: MAX. The division would then yield 340282366920938463463 in 18 decimals, which
comes to 340.282366920938463463 USD, which would be a disastrous discount.

Recommendations:

Consider either decreasing the value of RATE_OUTPUT_DECIMALS or implementing the logic
utilizing the U256 type available in the

Fluid: Resolved with

A Zenith 23

https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/oracle/src/helper.rs#L28-L40
https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/oracle/src/helper.rs#L70
https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/oracle/src/helper.rs#L30-L32
https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/oracle/src/helper.rs#L38-L40
https://crates.io/crates/uint
https://github.com/Instadapp/fluid-contracts-solana/commit/fb6fa4281254c80ee440aa6254c6ce0eb1e1019c

FLUID

SMART CONTRACT SECURITY ASSESSMENT

VERSION 1.1

Zenith: Verified.

A Zenith

24

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

4.2 High Risk

A total of 3 high risk findings were identified.

SEVERITY: High IMPACT: High
STATUS: Acknowledged LIKELIHOOD: Medium
Target
[]
Description:

Solana transactions are limited to 1232 bytes, which is the amount of data that can fit in a
single network packet. When taking intfo account the size of headers, signatures, and
addresses, this means legacy transactions can only fit about in a transaction.
When using Address Lookup Tables, this limit expands significantly, but has a hard
maximum of 128 addresses. If a transaction requires more than this number of accounts,
then the transaction will not be able to be created.

One area of the code that runs into this limitation is user operate() instructions. The
Operate Accounts struct by itself lists 34 accounts, leaving 94 accounts available for
provision in remaining_accounts. Two of these are consumed by the two oracle sources,
and at least one account is consumed for a tick_has_debt_accounts account, leaving 91
for BranchData accounts. With the way that branches are created, it is likely for the
accounts limitation to be hit. Consider the case of a range-bound market where users A, B,
and C create positions, and then their branch is partially liquidated. Next, the market goes
back up, and dip buyers create new positions at the top-most tick with positions which
creates a new branch, and then some of them are liquidated. The market goes back up,
new dip buyers take out new loans, and then are partially liquidated when the market goes
back down. Each of these dip-buying-then-liquidation cycles creates a new branch that
must be passed fo user A, B, and C's operate () instructions in order for them to modify
their positions. If there are enough cycles, those users will be unable to modify their
positions, and their positions and collateral will be stuck permanently (until they're
liquidated or absorbed).

The 1iquidate() instruction has a similar issue in that if there are a lot of branches that a
large liquidation wants to cover, that transaction will require many branch data, tickdata,
and has debt accounts, which will require them to break up their liquidations into multiple

A Zenith

25

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/context.rs#L398-L400
https://gbolahanf.medium.com/demystifying-address-lookup-tables-on-solana-8a018142169a

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

smaller liquidations, rather than one large one.

Recommendations:

Design a multi-transaction version of operate () that allows processing, via a new
mechanism, to be done in stages in different transactions, and ensure that the liquidate()
limitation is documented in code comments, and that the SDK properly calculates the
correct number of accounts to include in order to stay under the limit.

Fluid: Acknowledged. From our observations, branch depth rarely exceeds 5 in practice,
which is what we’ve seen on Ethereum as well. For the operate instruction, we use Address
Lookup Tables, giving us an effective limit of ~64 accounts enough to handle roughly
20—25 branches well above what we expect.

For liquidate, partial liquidation is already supported via the debt_amount parameter. We're
also considering adding a branch-based restriction similar to debt_amount so that
liquidations always go through, regardless of branch count.

In the meantime, this can be managed at the SDK level by calculating the appropriate
debt_amount based on the passed branches or ticks to ensure partial liquidation when
needed.

If needed in the future, we can also implement a multi-instruction approach to work around
account limits entirely.

A Zenith

26

FLUID SMART CONTRACT SECURITY ASSESSMENT

VERSION 1.1

SEVERITY: High

STATUS: Resolved

Target

Description:

IMPACT: High

LIKELIHOOD: Medium

When operating on a position, if a position was previously opened and its tick has been
liquidated, the fetch_latest_position function needs to be called to retrieve the updated
state after liquidation. However, during the tick is full liquidation, the program only sets
position_tick fo i32::MIN but does not reset position_raw_debt to zero.

pub fn fetch_latest_position(...)

let initial_position_raw_debt:

u64
ul28

let mut position_raw_debt:
let mut position_raw_col:

if is_fully liquidated {
position_tick = i32::MIN;
} else {

}
self.tick = position_tick;
self.debt_raw =
self.col_raw =

Ok (current_branch_idx)

ub4 =

— Result<usize> {

self.debt_raw.cast()?;

initial_position_raw_debt;
0;

position_raw_debt.cast()?;
position_raw_col;

This can lead to the user opening more debt than intended. For example, if User T's
position held 100 debt and was fully liquidated at some point, and now the user attempts
to open a new position with 100 debt, the old 100 debt is not cleared from memory_vars,
potentially resulting in 200 debt being unintentionally opened.

A Zenith

27

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/structs.rs#L114

FLUID

SMART CONTRACT SECURITY ASSESSMENT

VERSION 1.1

Recommendations:

When is_fully_liquidated is true, also set position_raw_debt to zero.
Fluid: Resolved with

Zenith: Verified.

A Zenith

28

https://github.com/Instadapp/fluid-contracts-solana/pull/40/commits/b19b3dbc472d13fc9373ea31ca9d86537ae30cae

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: High IMPACT: High
STATUS: Resolved LIKELIHOOD: Medium
Target

Description:

The may fail in certain cases due to borrowing the same BranchData
account twice. The function first (or), then

within a loop. Since branch_data.id remains
unchanged, the second borrow fails. If the current branch has not yet been liquidated, and
the first historical branch connected to the current branch has become bad debt due to
price fluctuations and needs to be absorbed, the above issue will occur.

The absorb function is triggered when . When absorb fails, the
entire liquidation system becomes blocked, preventing both bad debt absorption and
liquidation of borderline positions.

Recommendations:

Restructure the function to avoid double borrowing by scoping the initial BranchData
account load to extract all necessary data before attempting to borrow the account
mutably in the processing loop.

Fluid: Resolved with
Zenith: Verified.

A Zenith

29

https://github.com/Instadapp/fluid-contracts-solana/blob/audit-vault/programs/vaults/src/module/user.rs
https://github.com/Instadapp/fluid-contracts-solana/blob/audit-vault/programs/vaults/src/module/user.rs#L993-L1001
https://github.com/Instadapp/fluid-contracts-solana/blob/audit-vault/programs/vaults/src/module/user.rs#L1118
https://github.com/Instadapp/fluid-contracts-solana/blob/audit-vault/programs/vaults/src/module/user.rs#L1132
https://github.com/Instadapp/fluid-contracts-solana/blob/audit-vault/programs/vaults/src/module/user.rs#L1160-L1161
https://github.com/Instadapp/fluid-contracts-solana/blob/audit-vault/programs/vaults/src/module/user.rs#L523-L531
https://github.com/Instadapp/fluid-contracts-solana/commit/b70c44d2c0d67f5185f423fe611000e95df736f8

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

4.5 Medium Risk

A total of 16 medium risk findings were identified.

SEVERITY: Medium IMPACT: Low
STATUS: Resolved LIKELIHOOD: Medium
Target
[]
Description:

The pre_operate(), operate(), and claim() instructions each have the following
constraint:

#[account(constraint = liquidity.status = true @
ErrorCodes ::ProtocolLockdown)]
pub liquidity: Box<Account<'info, Liquidity>>,

The constraint requires that the status is true, but elsewhere in the and

true is interpreted as the "paused” state. Since the initialization code sets the initial state to
, the instructions above are actually unpaused by default. Attempts by auth roles to

pause user operations will fail, requiring debugging, before determining that the input arg

must be flipped instead.

Recommendations:

Change the constraints to use # instead.
Fluid: Resolved with

Zenith: Verified.

A Zenith

30

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/context.rs#L43
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/state.rs#L15-L18
https://github.com/Instadapp/fluid-contracts-solana/blob/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L215
https://github.com/Instadapp/fluid-contracts-solana/blob/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L33
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L218
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/e2ad489fabc34aa20c034490ac33687ce9bdd562

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[M-2] The reward_rate may be released incorrectly.

SEVERITY: Medium IMPACT: Medium
STATUS: Resolved LIKELIHOOD: Medium
Target

® helpers.rs

Description:

When the current time exceeds rewards_ended, the program does not specially handle the
final reward distribution up to the rewards_ended fime. This may lead to incorrect reward
allocation.

fn calculate new_token_exchange price(
new_liquidity_exchange_price: u64,
lending: &Account<Lending>,
current_rate_model: &Account<LendingRewardsRateModel>,
f_token_total_supply: u64,

) = Result<(u64, bool)> {

let (mut rewards_rate, rewards_ended, rewards_start time)
= current_rate_model.get_rate(
old_token_exchange_price
.cast::<u128>()?
.safe_mul(f_token_total_supply.cast()?)?
.safe_div(EXCHANGE_PRICES PRECISION.cast()?)?
.cast()?,
%3
if rewards_rate > MAX_REWARDS RATE.cast()? || rewards_ended {
// rewardsRate is capped, if it is bigger > MAX_REWARDS_RATE, then
the rewardsRateModel
// is configured wrongly (which should not be possible). Setting
rewards to 0 in that case here.
rewards_rate = 0;

For example: If the current reward distribution period is from time 100 to 200 and the
rewards_rate is ratet, suppose the last system interaction occurs at time 190, and the next

A Zenith 3]

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/utils/helpers.rs#L124

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

one happens atf fime 210 — which is after rewards_ended. At that point, rewards_rate will
immediately return O, and the rewards between 190 and 200 will remain undistributed.

If there is another reward distribution queue starting after time 200 with rewards_rate =
rate2, then only the rewards from 200 to 210 will be properly distributed. The rewards
from 190 to 200 will still be lost.

Recommendations:

It is recommended to specifically handle the reward distribution for the period between the
last update time and the rewards_ended time.

Fluid: Resolved with
Zenith: Verified.

A Zenith 32

https://github.com/Instadapp/fluid-contracts-solana/pull/39/commits/b2ed0badecb564544cf7fc3e9295b6d398dd97a4

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Medium IMPACT: Medium
STATUS: Resolved LIKELIHOOD: Medium
Target
[}
Description:
When the new token exchange price is calculated in this , the reward

information is retrieved from the current rate model using the

When the current time is after the reward end time, the mathematical operations can
overflow during the final rate calculation:

let yearly_reward = next_reward_amount
.safe_mul (SECONDS_PER_YEAR)?
.safe_div(next_duration)?;

let rate = yearly_ reward
.safe_mul(100_000_000_000_000)?
.safe_div(total_assets)?;

Since all of these values are of type u64, the overflow would occur if either
next_reward_amount is greater than 584942417355, or if the calculated yearly_reward is
greater than 184467.

Since this calculation is part of multiple 1lending operations, including preview_mint,
preview_redeem, execute_withdraw, and execute_deposit, these would revert due to the
overflow until the reward rate model's end time is updated or sufficient time passes beyond
the calculated new_end_time threshold.

Recommendations:

Consider casting these values to u128:

let yearly reward = next_reward_amount
.cast::<u128>()?

A Zenith

33

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lendingRewardRateModel/src/state/state.rs
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/utils/helpers.rs#L97
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lendingRewardRateModel/src/state/state.rs#L50

FLUID SMART CONTRACT SECURITY ASSESSMENT

VERSION 1.1

let rate = yearly_reward
.safe_mul(100_000_000_000_000)? // 1el4

Fluid: Resolved with @b2edObadech...

Zenith: Verified.

A Zenith

34

https://github.com/Instadapp/fluid-contracts-solana/pull/39/commits/b2ed0badecb564544cf7fc3e9295b6d398dd97a4

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Medium IMPACT: Medium
STATUS: Resolved LIKELIHOOD: Medium
Target
[]
Description:
If there are already live prices, the update_token_config() instruction and stores

the updated exchange prices after the configuration update. It also updates the
last_update_timestamp buf never updates the last_utilization or the borrow_rate,
which are directly used to calculate the next interest owed/paid. It is possible that interest
growth prior to the instruction, or the fee_on_interest change, would have otherwise
pushed the utilization past the rate model's kink, and would have either required a much
higher or much lower borrow rate than occurs due to this bug.

The solidity code has the issue.

Recommendations:

Calculate and store the updated utilization and borrow rate as is done for the
instruction, or call update_exchange_prices_and_rates() after updating storage.

Fluid: Resolved with and

Zenith: Verified

A Zenith

35

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L306-L323
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L308-L309
https://github.com/Instadapp/fluid-contracts-public/blob/98a5dae9448e5b1c4e354f8a00eb6515ca5e9b54/contracts/liquidity/adminModule/main.sol#L546-L548
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/user.rs#L120-L142
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/9a5a9e6ad770863a45d4c849c65b1eb4c55be435
https://github.com/Instadapp/fluid-contracts-solana/commit/630b78c05ba0ef8a201a79924e3ce0dd24bf8747

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Medium IMPACT: Medium
STATUS: Acknowledged LIKELIHOOD: Low
Target

Description:

Some token-2022 extensions may cause problems with the protocol:

- The permanent delegate will always be authorized to transfer
funds out of the vault and any claim account.

- This extension will prevent all users from withdrawing funds for mints with
this extension, since the liquidity program the deprecated transfer() function,
which disallows this extension.

- In addition to breaking claims due to it not being supported for
transfer (), mints with this feature will the claim process since the user claim
won't match the amount actually transferred into the claim account.
- The deprecated transfer() function disallows this extension, which
will break claiming.
- accounts may be frozen, with no way for the 1iquidity
PDA to unfreeze them.

- A token with this extension may change its decimals by closing
an re-opening with a new decimal amount. This may occur between when the token
rate is first set, and when the token is first supplied, potentially violating the maximum
unit amount constraints. This extension would also allow creating a new mint with a
permanent delegate.

A related issue is that even normal SPL tokens have a who can use that
authority to prevent tokens from being transferred to/from any user's address. This may
cause liquidations fo fail or may prevent borrowers from repaying loans.

A Zenith

36

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/user.rs#L284
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/context.rs#L94-L101
https://github.com/Instadapp/fluid-contracts-solana/blob/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L231
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/user.rs#L185
https://spl.solana.com/token-2022/extensions#permanent-delegate
https://docs.rs/spl-token-2022/latest/spl_token_2022/extension/pausable/instruction/index.html
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/user.rs#L185
https://spl.solana.com/token-2022/extensions#transfer-fees
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/user.rs#L284
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/utils/token.rs#L38
https://spl.solana.com/token-2022/extensions#transfer-hook
https://spl.solana.com/token-2022/extensions#default-account-state
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/context.rs#L94-L101
https://spl.solana.com/token-2022/extensions#mint-close-authority
https://github.com/Instadapp/fluid-contracts-solana/blob/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L231
https://explorer.solana.com/address/EPjFWdd5AufqSSqeM2qN1xzybapC8G4wEGGkZwyTDt1v/metadata

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Recommendations:

Disallow tokens that have extensions enabled, and decide on a strategy for handling frozen
accounts and foken pauses.

Fluid: Made changes to exclude non-whitelisted extensions, but USDG requires support
for some of the extensions listed above. Resolved with and

Zenith: Fluid acknowledges that the dangerous extensions still are allowed in order to
support , and that later updates to the transfer fee, hooks, or default state may cause
issues down the road.

A Zenith 37

https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/dd1e564cfa4ea2c9f18f3b33b7be9cb6955c521a
https://github.com/Instadapp/fluid-contracts-solana/pull/62
https://solscan.io/token/2u1tszSeqZ3qBWF3uNGPFc8TzMk2tdiwknnRMWGWjGWH#extensions

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Medium IMPACT: Medium
STATUS: Resolved LIKELIHOOD: Medium
Target
[]
Description:
Unlike the code, the update_user_borrow/supply_config() functions use

calculate_exchange_prices() rather than calling update_exchange_price() which would
also update the last_update_timestamp. This means that when the update functions are
called, their internal calls to update_exchange_prices_and_rates() calculate fresh prices
on top of what was fetched from calculate_exchange_prices(), resulting in a
re-application of the expected interest since the last update.

Recommendations:

Use update_exchange_price() in both functions, rather than calling
calculate_exchange prices()

Fluid: Resolved with

Zenith: Verified.

A Zenith

38

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L624
https://github.com/Instadapp/fluid-contracts-public/blob/98a5dae9448e5b1c4e354f8a00eb6515ca5e9b54/contracts/liquidity/adminModule/main.sol#L707
https://github.com/Instadapp/fluid-contracts-solana/commit/9ea104b9dd66ae95f3a717b9e37bda061bddd150

FLUID SMART CONTRACT SECURITY ASSESSMENT

VERSION 1.1

SEVERITY: Medium

STATUS: Resolved

Target

Description:

IMPACT: Medium

LIKELIHOOD: Medium

If the withdrawal or borrow uses a Claim method, the user needs to manually call the claim
instruction to receive their tokens. During this period, since the tokens remain in the vaulf,
the corresponding amount must be recorded to prevent it from being borrowed or
withdrawn. Otherwise, it could result in the user’s claim failing due to insufficient funds.

In the operate instruction, there is an Inappropriate check: when withdraw_to #
borrow_to, the system processes the withdraw and borrow transfers sequentially. If the
Claim transfer type is used in this case, the borrow_transfer might use an outdated
last_stored_claim_amount, because total_claim_amount was already increased during

the earlier withdraw_transfer.

pub fn operate(
ctx: Context<Operate>,

supply amount: i128, // Used max available in rust i128

borrow_amount: 1128,
withdraw_to: Pubkey,
borrow_to: Pubkey,
mint: Pubkey,

transfer_type: TransferType,

) = Result<(u64, u64)> {

} else {

if withdraw_transfer_amount > 0 {
let claim_amount = handle_transfer_or_claim(
&transfer_type,
withdraw_to,
&mut ctx.accounts.claim_account,
last_stored_claim_amount,
TokenTransferParams {

A Zenith

39

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/user.rs#L216

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

source: ctx.accounts.vault.to_account_info(),

destination:
ctx.accounts.withdraw_to_account.to_account_info(),

authority:
ctx.accounts.liquidity.to_account_info(), // the liqudity PDA owns the
authority to transfer the tokens

amount: withdraw_transfer_amount,

token_program:
ctx.accounts.token_program.to account_info(),

signer_seeds: Some(&[&liquidity_seeds]),

mint: None,

Do

)?;

total_claim_amount =
total_claim_amount.safe_add(claim_amount)?;

}

if borrow_transfer_amount > 0 {
let claim_amount = handle_transfer_or_claim(
&transfer_type,
borrow_to,
&mut ctx.accounts.claim_account,
last_stored_claim_amount,
TokenTransferParams {
source: ctx.accounts.vault.to account_info(),
destination:
ctx.accounts.borrow_to_account.to_account_info(),
authority:
ctx.accounts.liquidity.to_account_info(), // the liqudity PDA owns the
authority to transfer the tokens
amount: borrow_transfer_amount,
token_program:
ctx.accounts.token_program.to_account_info(),
signer_seeds: Some(&[&liquidity_seeds]),
mint: None,
by

) B8
total_claim_amount =

total_claim_amount.safe_add(claim_amount)?;

}

token_reserve.add_claim_amount(total_claim_amount)?;

A Zenith

40

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

For example:

1. The vault currently holds 3000 tokens, with total_claim_amount = 2000.

2. Arequest is made for withdraw = 1000 and borrow = 1000, where withdraw_to =
borrow_to, and the transfer_type is Claim.

3. After executing withdraw_transfer, total_claim_amount should increase to 3000. At
this point, no further tokens should be allowed to be withdrawn. However, since the
outdated last_stored_claim_amount = 2000 is passed info borrow_transfer, the
subsequent borrow_transfer still passes the checks.

4. After both borrow_to and withdraw_to successfully call claim, the vault ends up with
only 1000 tokens, while total_claim_amount = 2000. This may cause future user claims
to fail due to insufficient funds in the vault.

Recommendations:

It is recommended to update the outdated last_stored_claim_amount before executing
borrow_transfer.

Fluid: Resolved with
Zenith: Verified

A Zenith

41

https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/4625f94b1314d3042f3afbd028bba60e12955b2e

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Medium IMPACT: Medium
STATUS: Resolved LIKELIHOOD: Medium
Target
[]
Description:

The oracle program interface supports two separate price-fetching variants used by the
vault - get_exchange_rate_operate() and get_exchange_rate_liquidate(), where the
later has extra limitations on the price returned, e.g. in order fo prevent
. During liquidations, the vault calls its
get_exchange_rate_liquidate() function, but this function ends up internally calling the
instruction instead of the get_exchange _rate_liquidate()
function, which means the vault program is vulnerable to forced liquidation attacks.

Recommendations:
Invoke the correct oracle CPI for liquidations.
Fluid: Resolved with and

Zenith: Verified

A Zenith

42

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/invokes/oracle.rs#L39-L41
https://github.com/Instadapp/fluid-contracts-public/blob/98a5dae9448e5b1c4e354f8a00eb6515ca5e9b54/contracts/oracle/fluidCappedRate.sol#L568
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/invokes/oracle.rs#L28
https://github.com/Instadapp/fluid-contracts-solana/commit/50187fee83d68f8f4bdb477b6de68d8306d8480d
https://github.com/Instadapp/fluid-contracts-solana/commit/0d5085d552a842f64ec14b68fc4c6070b04427c4

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Medium IMPACT: Medium
STATUS: Resolved LIKELIHOOD: Medium
Target
[]
Description:

The rewards_rate from the Lending Rewards Rate Model is one of the factors when
calculating the new token exchange price. The newly calculated price is inflated by the
current rate from the LRRM, based on time elapsed since the last update until the current
time. If the last update occurred before the current rewards start time, the

last_update_timestamp is sef to the rewards_start_time as we can . In the LRRM
implementation, we can see that if the reward start time is in the future, hence greater
than the current time, the function will return the start time of the rewards ().

This, however, means that later the func’rlon will try to subtract this future timestamp from
the current timestamp as we can

let total return_from_rewards: u128 = rewards_rate
.cast::<u128>()?
.safe_mul(curr_timestamp.safe_sub(last_update_timestamp.cast()?)?)?
.safe_div(SECONDS_PER_YEAR)?;

Note that this is the same implementation as in Solidity, where the implementation
underflows since it is a part of an unchecked block, but it has no impact since the
reward_rate in this case is zero. In the Rust implementation, the
curr_timestamp.safe_sub(last_update_timestamp.cast()?) calculation will return an Err
variant, hence DoSing the calls that rely on calculating the new token exchange price
(which is one of the most essential functions in the protocol).

Recommendations:

Consider using saturating_sub instead of safe_sub:

A Zenith 43

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/utils/helpers.rs
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/utils/helpers.rs#L134
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lendingRewardRateModel/src/state/state.rs#L58-L59
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/utils/helpers.rs#L146

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

let total_return_from_rewards: u128 = rewards_rate
.cast::<ul128>()?

.safe_mul(curr_timestamp.safe_sub(last_update_timestamp.cast()?)?)?
.safe_mul(curr_timestamp.saturating_sub(last_update_timestamp.cast()?))?
.safe div(SECONDS_PER_YEAR)?;

Fluid: Resolved with
Zenith: Verified.

A Zenith

44

https://github.com/Instadapp/fluid-contracts-solana/commit/b2ed0badecb564544cf7fc3e9295b6d398dd97a4

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Medium IMPACT: Medium
STATUS: Resolved LIKELIHOOD: Medium
Target
[]
Description:
As per inline comments and ,the declining rate is supported before kink.

kink to max must be increasing.. This means that the rate model can be set so that
rate_at_zero is greater than rate_at_kink1, and it is an expected state. However, rate
models set like this would not work because of underflow in the

The very is:

let num: 1128 = y2.safe_sub(y1)?.safe_mul(TWELVE_DECIMALS)?.cast()?;

It represents the maximum rate minus the minimum rate. If the maximum rate is lower than
the minimum (declining interest rate), the safe_sub would return an error, hence reverting.
The result of this would be DoS of actions that would leave the utilization in the
non-functioning decreasing rate area of the interest rate curve. The utilization would need
to get back to the increasing rate area in that case for it fo work.

Recommendations:

Consider casting y2 and y1 to i128 before the subtraction:

let num: i128 = y2.safe_sub(y1)?.safe_mul(TWELVE_DECIMALS)?.cast()?;
let num: 1128 = y2

.cast::<i128>()?

.safe_sub(y1.cast()?)?

.safe_mul(TWELVE_DECIMALS.cast()?)?

.cast()?;

Fluid: Resolved with

A Zenith 45

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/rate_model.rs
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/rate_model.rs#L37
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/rate_model.rs#L62
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/rate_model.rs#L173
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/rate_model.rs#L180
https://github.com/Instadapp/fluid-contracts-solana/pull/40/commits/300b5ec7361d29d15a7ac8a39ed5eec417bd10c4

FLUID

SMART CONTRACT SECURITY ASSESSMENT

VERSION 1.1

Zenith: Verified

A Zenith

46

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Medium IMPACT: Medium
STATUS: Resolved LIKELIHOOD: Medium
Target
[]
[]
Description:

If the supply token being used has fewer than nine decimals, the amount of collateral
deposited is to nine decimals. Later, this scaled up amount is to the
check_if_withdrawal_safe_for_withdrawal_gap() function where it is divided by the
liquidity_ex_price, which is an un-scaled amount. This means that the resulting amount
being requested is over-estimated by the function, by an order of magnitude for every
decimal the token is below nine. When the withdrawal gap feature is enabled, this will likely
cause the withdrawal request to be rejected, because amounts that should have fit below
the limit are treated as though they are much larger.

Recommendations:

Save the pre-scaled amount, and use it in the call to
check_if_withdrawal_safe_for_withdrawal_gap().

Fluid: Resolved with
Zenith: Verified.

A Zenith

47

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/module/user.rs#L97
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/utils/operate.rs#L97-L101
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/module/user.rs#L97
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/module/user.rs#L313
https://github.com/Instadapp/fluid-contracts-solana/commit/e54760bf89a09f9096b18b4a5f8d279e9ea91b0c

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Medium IMPACT: Medium
STATUS: Resolved LIKELIHOOD: Medium
Target
[]
[]
Description:

The creation of a new position requires that the caller provides the correct next position's
ID, which is required to be equal to the count of the current number of positions. An
attacker can cheaply DOS the creation of new positions by continuously creating random
amounts of new positions in a transaction in every block with high priority fees, making it
impossible for legitimate users of the protocol to anticipate the correct new position count.

The init_tick_id_liquidation() instruction also uses a global counter and therefore
limits the speed with which users can modify their positions after a liquidation. The function
requires that the new ID matches the TickData's current total_ids, and this means new
TickIdLiquidations can't be created until prior ones have been filled.

Recommendations:

For positions, allow random position IDs to be passed to the init_position() instruction.
The TokenMetadata extension's additional_metadata field can be used on the NFT's mint in
order to store the position's Pubkey, and the update of the fotal positions counter can be
done the first time position is used in the operate() instruction.

For liquidations, allow the creation of multiple TickIdLiquidations at a time, so that they
can be pre-inited prior to them being needed. It may also be worth while to increase the
number of entries per tick_map in the TickIdLiquidation PDA, so that new
TickIdLiquidations have fo be created less frequently.

Fluid: For new position creation, we don’t see a strong DOS risk currently, users can always
retry later or we can patch via upgrade if needed. However, we agree that for position
modification post liquidations this check is important, and we've implemented the proposed
change by removing the check from InitTickIdLiquidation with

Zenith: Position creation DOS is acknowledged, and the liquidation DOS fix is verified.

A Zenith

48

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/utils/validate.rs#L76
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/context.rs#L167
https://github.com/Instadapp/fluid-contracts-solana/pull/41/commits/13b7d96b16de3ab307e1ef817cc344c39b147a06

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Medium IMPACT: Medium
STATUS: Resolved LIKELIHOOD: Low
Target
[]
Description:

Users with an existing debt position can experience a denial of service due to an overflow
in the fetch_latest_position function. If the user was liquidated before but retains more
than 1% of the debt, the debt is decreased by 1% (). However, the
position_raw_debt variable was declared as u64 (), meaning that on values of
1844858893260282 and greater, it will overflow and panic. Since debt is standardized to 9
decimals, this would represent at least 1_844_858 units of debt, which in USDC, for
example, can mean ~1.8 million USD. Since the function would not work, the user would
not be able to update their position, potentially facing more damage.

Recommendations:

Consider casting the value to u128 before multiplying:

position_raw_debt = position_raw_debt.safe _mul(9999)?.safe div(10000)7?;
position_raw_debt = position_raw_debt

.cast::<ul128>()?

.safe_mul(9999)?

.safe_div(10000)?

.cast()?;

Fluid: Resolved with
Zenith: Verified.

A Zenith

49

https://github.com/Instadapp/fluid-contracts-solana/blob/audit-vault/programs/vaults/src/state/structs.rs
https://github.com/Instadapp/fluid-contracts-solana/blob/audit-vault/programs/vaults/src/state/structs.rs#L185
https://github.com/Instadapp/fluid-contracts-solana/blob/audit-vault/programs/vaults/src/state/structs.rs#L111
https://github.com/Instadapp/fluid-contracts-solana/commit/819081bcaced5ee8ab6de0cd412d77ca06d98e72

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Medium IMPACT: Medium
STATUS: Resolved LIKELIHOOD: Low
Target
[]
Description:

Users are allowed to repay part of their debts without oracles being consulted, as long as
the position results in a less risky tick with less net borrowing. While these sorts of
operations make the position itself less risky, on Solana with the way the protocol's
accounts are organized, such operations can introduce more risk info the system. Since
any update to an existing position results in a completely new position with potentially new
tick and "has debt" accounts created, this means that any user wishing to liquidate such a
position will have to had provided these accounts in their liquidation instruction. Since
most liquidations will involve the use of an Address Lookup Table which must have been
'activated' (its creation block must appear in the slot hashes sysvar) prior to its use, any
changes to the accounts required for a liquidation ix will require a new ALT and 1-2 blocks
of delay before the instruction can be executed. It is possible that a user is past the
liquidation threshold and, repeatedly over multiple blocks, repays the minimum amount of
debt, which ends up keeping them in the liquidation range over multiple blocks, and
prevents the legitimate liquidation of it or other positions. Eventually, if the market moves
quickly enough, positions may move to the absorption range and become uneconomical
for liquidation.

Recommendations:

Do not let modified positions be added to ticks that are above the liquidation threshold
according to the oracle price.

Fluid: Resolved with

Zenith: Verified.

A Zenith

50

https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/vaults/src/module/user.rs#L283-L304
https://github.com/Instadapp/fluid-contracts-solana/commit/50445ef3c987382c3fc70b740ebc0cdbc3551d1f

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Medium IMPACT: Medium
STATUS: Resolved LIKELIHOOD: Low
Target

Description:

When there is a network the Solana chain is often to a slot in the past
with a more consistent state. This means that if there have been configuration changes
after that slot, the changes will be rolled back too. One place that is particularly vulnerable
to this is the update of vault oracles. The Pyth oracles in use by the protocol use their own
multiplier and divisor fields in order to ensure that the price returned has the correct
decimals. Since the Pyth update's is never read, the multiplier and divisor must
necessarily account for the exponent. If the Pyth feed needs to change its exponent, then
the Fluid protocol will need to update the vault fo use a oracle with new multipliers
and divisors. If this change of oracles is rolled back, then users interacting with the vault
prior to its re-application will be able to use prices with the wrong number of decimals,
allowing them to liquidate positions that otherwise shouldn't be liquidated. Other
configuration parameters such as the collateral factor, paused/frozen state, rate
parameters, and fees may also have negative consequences when they're rolled back.

Recommendations:

Apply the Pyth exponent separately from the multiplier and divisor, and in all programs add
account fields and instructions for tracking and updating the last restart slot, and prevent
new user operations if it doesn't match the LastRestartSlot sysvar.

Fluid: Resolved with . While a positive exponent is theoretically possible, it
has never occurred in practice. Additionally, we always validate the exponent before setting
the feed, so if ever needed can be updated later. The other aspects of the finding relating
to the last restart slot are acknowledged.

Zenith: Verified that the fix solves for the case of negative exponents changing. Positive
exponents, and other configuration rollbacks are acknowledged.

A Zenith 51

https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/oracle/src/helper.rs#L28-L32
https://www.helius.dev/blog/solana-outages-complete-history
https://www.helius.dev/blog/solana-outages-complete-history#network-restarts
https://docs.pyth.network/price-feeds/best-practices#fixed-point-numeric-representation
https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/vaults/src/module/admin.rs#L629
https://github.com/Instadapp/fluid-contracts-solana/commit/5bd4a17f1a35eff0a38dd9b2e6fe8755f447473f

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Medium IMPACT: Medium
STATUS: Resolved LIKELIHOOD: Low
Target

Description:

On Solana, the Pyth network provides oracle updates every 60 seconds or whenever there

is a of 0.5% or more, for its sponsored feeds. For the non-sponsored feeds, there
are no specific guarantees. The only caveat for the sponsored feeds is that if there is a
network (which, in the past, has lasted for as many as 19 hours), the Pyth network
may be to push updates until the outage is resolved. Since the Fluid protocol is

reading the raw price update account without checking for staleness, when the network
comes back an attacker can use flash loans to take out large loans using the outdated price
and potentially worthless collateral, leaving the protocol with bad debt.

Recommendations:

Add price staleness checks such as the ones provided by the Pyth
function.

Fluid: Resolved with , , and

Zenith: Verified.

A Zenith

52

https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/oracle/src/modules/pyth.rs#L23-L36
https://docs.pyth.network/price-feeds/sponsored-feeds/solana
https://www.helius.dev/blog/solana-outages-complete-history
https://docs.pyth.network/price-feeds/best-practices#price-availability
https://github.com/pyth-network/pyth-sdk-rs/blob/3cf46a4ba469d7815c2ff4dd575ae6df330fbde0/pyth-sdk/src/lib.rs#L163-L177
https://github.com/Instadapp/fluid-contracts-solana/pull/55/commits/08a8d061673edf0bcae26c398f157b9ca63d8164
https://github.com/Instadapp/fluid-contracts-solana/commit/b10e51a0ac7d48f0e7533b6cfe4a7df1b262940d
https://github.com/Instadapp/fluid-contracts-solana/commit/9ea1a950d34e035710062013f30e204bbbfe5085

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

4.4 Low Risk

A total of 28 low risk findings were identified.

SEVERITY: Low IMPACT: Low
STATUS: Acknowledged LIKELIHOOD: Low
Target
[]
Description:

In the protocol, the initialization of privileged addresses is not protected by access control.
If the project team does not perform the program deployment and initialization within the
same transaction, a malicious actor could front-run the initialization, rendering the program
unusable.

#[derive (Accounts)]

pub struct InitLendingAdmin<'info> {
#[account (mut)]
pub authority: Signer<'info>,

#[account (
init,
payer = authority,
space = 8 + LendingAdmin:: INIT_SPACE,
seeds = [LENDING_ADMIN_SEED],
bump,
)]

pub lending_admin: Account<'info, LendingAdmin>,

pub system_program: Program<'info, System>,

#[derive (Accounts)]

A Zenith 53

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/state/context.rs#L23

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

pub struct InitLendingRewardsAdmin<'info> {

#[account (mut)]
pub authority: Signer<'info>,

#[account (
init,
payer = authority,
space = 8 + LendingRewardsAdmin:: INIT_SPACE,
seeds = [b"lending rewards_admin"],
bump,
)]
pub lending_rewards_admin: Account<'info, LendingRewardsAdmin>,

pub system_program: Program<'info, System>,

#[derive (Accounts)]
pub struct InitLiquidity<'info> {

#[account (mut)]
pub signer: Signer<'info>,

#[account (
init,
seeds = [LIQUIDITY_SEED],
payer = signer,
space = 8 + Liquidity:: INIT_SPACE,
bump
)]
pub liquidity: Account<'info, Liquidity>,

#[account (
init,
seeds = [AUTH_LIST_ SEED],
payer = signer,
space = 8 + AuthorizationList::INIT_SPACE,
bump
)1
pub auth_list: Account<'info, AuthorizationlList>,

pub system program: Program<'info, System>,

A Zenith

54

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Recommendations:

It is recommended to add access control to these functions, restricting them so that only
specific hardcoded addresses are allowed to call them.

Fluid: Acknowledged

A Zenith

55

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[L-2] Using the deprecated transfer instruction may cause
incompatibility with some tokens

SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target
® spl.rs
Description:

The program allows integration with tokens from the Token2022 program. However, many
parts of the code still use the deprecated transfer instruction for transfers. This leads fo
incompatibility with tokens that have certain extensions, as the transfers may fail.

pub fn transfer_spl_tokens(params: TokenTransferParams) — Result<()> {

if let Some(seeds) = signer_seeds {
#[allow(deprecated)]
token_interface:: transfer(
CpiContext::new_with_signer(token_program.clone(),
transfer_ix, seeds),
amount,
)?
} else {
#[allow(deprecated)]
token_interface:: transfer(CpiContext:: new(token_program.clone(),
transfer_ix), amount)?
}
}

0ok (())

fn deposit_to liquidity(ctx: &Context<Deposit>, amount: u64, mint: Pubkey)
— Result<u64> {

// Transfer tokens to liquidity
transfer_spl tokens(TokenTransferParams {

A Zenith 56

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/library/src/token/spl.rs#L73

FLUID

SMART CONTRACT SECURITY ASSESSMENT

VERSION 1.1

source: ctx.accounts.depositor_token_account.to account_info(), //
depositor token account

destination: ctx.accounts.vault.to_account_info(), // vault, aka
liquidity mint PDA

authority: ctx.accounts.signer.to_account_info(), // msg.sender

amount, // amount

token_program: ctx.accounts.token_program.to account info(), //
token program

signer_seeds: None,

mint: None, //

})7?;

Specifically, extensions like TransferHookAccount, TransferFeeAmount, and
PausableAccount require the mint account to be included in the instruction.

pub(crate) fn process_transfer(

program_id: &Pubkey,

accounts: &[AccountInfol,

amount: u64,

transfer_instruction: TransferInstruction,

) = ProgramResult {

else {
// Transfer hook extension exists on the account, but no mint
// was provided to figure out required accounts, abort
if source_account
.get_extension::<TransferHookAccount>()
.is_ok()

return Err(TokenError::MintRequiredForTransfer.into());

// Transfer fee amount extension exists on the account, but no
mint
// was provided to calculate the fee, abort
if source_account
.get_extension_mut::<TransferFeeAmount>()
.is_ok()

return Err(TokenError::MintRequiredForTransfer.into());

// Pausable extension exists on the account, but no mint
// was provided to see if it's paused, abort

A Zenith

57

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

if source_account.get extension::<PausableAccount>().is ok() {
return Err(TokenError::MintRequiredForTransfer.into());

}
(0, None, None)
b
}
Recommendations:

It is recommended to avoid using the deprecated transfer instruction. If the mint account
is not passed in the instruction, consider retrieving the mint account address from the
TokenAccount’s data instead.

Fluid: Resolved with

Zenith: Verified.

A Zenith

58

https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/dd1e564cfa4ea2c9f18f3b33b7be9cb6955c521a

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: High
Target
[]
Description:

Since the initialize_token_metadata call is commented out in the init_lending
instruction, the f_token metadata cannot be created.

pub fn init_lending/(
ctx: Context<InitLending>,
symbol: String,
liquidity_program: Pubkey,
) — Result<()> {

0k (())

Recommendations:

It is recommended to uncomment the initialize_token_metadata call so that the
metadata for the f_token can be created when the init_lending instruction is executed.

Fluid: Resolved with

Zenith: Verified.

A Zenith 50

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/module/admin.rs#L76
https://github.com/Instadapp/fluid-contracts-solana/pull/40/commits/4cefb7357c4cae5fe57e8254a8e128b6cfc9b894

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Acknowledged LIKELIHOOD: Low
Target
[}
Description:
The borrow exchange price calculation in the uses a

simple interest approximation that produces different results based on update frequency,
leading to price inconsistencies between different update patterns.

The current implementation accumulates interest linearly per update:

borrow_exchange price = borrow_exchange price.safe add(
borrow_exchange_price
.safe_mul(borrow_rate)?
.safe_mul(seconds_since_last_update)?
.safe_div(SECONDS_PER_YEAR.safe_mul(FOUR_DECIMALS)?)?

)?;

This creates divergent outcomes for identical time periods with different update
frequencies:

¢ 1 update after 10 seconds: Results in price P;
® 10 updates during 10 seconds: Results in price P, (where P, > Py)

The deviation becomes significant with longer update intervals:

® Per-second updates vs 1 annual update (6% APR): 1.061820282945 vs 1.06 (0.17%
difference)

® Per-second updates vs 1 annual update (10% APR): 1105154345224 vs 1.10 (0.47%
difference)

While the difference might be insignificant, it becomes more significant with higher borrow
rates and is worth considering.

A Zenith 60

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/token_reserve.rs
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/token_reserve.rs#L360

FLUID

SMART CONTRACT SECURITY ASSESSMENT

VERSION 1.1

Recommendations:
Consider calculating the new price using a compound interest approximation.

Fluid: Acknowledged

A Zenith

ol

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target
[]
[]
Description:

The UserClaim accounts must be created by users prior to being passed as accounts for
the various operation-related instructions. They cost rent to store, but once the user is done
with them, there is no way to close the accounts and reclaim the rent.

User positions have a similar issue in that the UserPosition and associated NFT Mint
accounts are never closed, even after the position is fully closed.

Recommendations:
Provide instructions for closing the accounts.

Fluid: Resolved the UserClaim part with . Acknowledged the
user-position-related part of the submission. While we don't plan to support this at initial
launch, we'll definitely consider adding it later if and when there's a clear need for it.

Zenith: Verified the UserClaim part.

A Zenith

62

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/context.rs#L94-L101
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/context.rs#L215-L232
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/996368afea0c7140c0bd3ea757a54ca53ad92078

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target
[]
Description:

The method checked_floor_div is supposed to round numbers down, however it performs
this rounding incorrectly. As we can see in the following code:

fn checked_floor_div(&self, rhs: $t) — Option<$t> {
let quotient = self.checked_div(rhs)?;

let remainder = self.checked_rem(rhs)?;

if remainder =+ <$t>::zero() {
quotient.checked_sub(<$t>::one())
} else {
Some (quotient)

If the remainder is not zero, 1 will be subtracted from the result. This works for negative
integers, as for example -3 / 2 would yield -1 and -1 as a remainder, and rounding down
means the result should be -2 (hence subtracted by 1). However, if we divided 3 / 2, the
result is 1 and the remainder is 1, meaning the result will be subtracted by 1, resulting in o,
while 1 should be the correct result. While this could potentially be a disastrous mistake,
the function is not used anywhere in the scope for now, hence the low severity rating.

Recommendations:

Consider subtracting one only if the remainder is less than zero:

fn checked_floor_div(&self, rhs: $t) -> Option<$t> {
let quotient = self.checked _div(rhs)?;

A Zenith 63

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/library/src/math/floor_div.rs

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

let remainder = self.checked rem(rhs)?;

if remainder # <$t>::zero() {
if remainder < <$t>::zero() {
quotient.checked_sub(<$t>::one())
} else {
Some (quotient)

Fluid: Resolved with
Zenith: Verified

A Zenith

64

https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/9bea6051f8923799129eb7c0664625b87a7a837d

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Acknowledged LIKELIHOOD: Low
Target
[]
Description:
The solana implementation of the liquidity protocol, unlike the one, rejects any

operate() instruction where both of the amounts are under MIN_OPERATE_AMOUNT. This
means that if a user only has a dust amount remaining (e.g. they meant to withdraw all, but
accidentally left some dust), they'll be unable to withdraw it without re-depositing enough
to cover the minimum. This may be especially problematic for interest-free suppliers, as
interest will never push them over the minimum.

Recommendations:

It's not clear what specific risk this threshold is protecting against, but if it is in fact required,
withdrawal requests that result in the remaining supply being under this amount should be
rejected.

Fluid: Acknowledged. As a general practice across our profocols, we enforce limits on
both extremely small and extremely large amounts to mitigate risks such as dust
accumulation, unintended donations, or large-value manipulation. In the rare case a user
wishes fo withdraw the remaining dust, they can simply deposit a small amount and then
withdraw their full balance. Also note that by default, for every protocol that we deploy we
create a small dust position of a few $ that is the first user and will stay in forever, so no
actual user will ever face any issues around being locked as the last user because of some
edge case revert or underflow. On EVM we do not have the exact same check, but the
checks that revert with UserModule_ OperateAmountInsufficient target a similar issue
there, where the user amount would be too small to cause a change in storage values and
is thus rejected. This min operate amount check is intended to replicate a similar effect.

A Zenith 65

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/user.rs#L40-L42
https://github.com/Instadapp/fluid-contracts-public/blob/98a5dae9448e5b1c4e354f8a00eb6515ca5e9b54/contracts/liquidity/userModule/main.sol#L317-L319

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target
[}
[]
[]
Description:

Some fields of emitted events may contain incorrect information:

® | ogUpdateRateDataVi - rate_data.token is never constrained to match
UpdateRateData.mint

® | ogUpdateRateDataV2 - rate_data.token is never constrained to match
UpdateRateData.mint

® | ogUpdateUserSupplyConfigs - user_supply_config.user is never constrained to
match UpdateUserSupplyConfig.protocol

® | ogUpdateUserBorrowConfigs - user_borrow_config.user is never constrained to
match UpdateUserBorrowConfig.protocol

® For the pre_operate() ix, there is no constraint forcing the mint of each supply to
match the mint input argument. However, in that case, there is no emit to show the
incorrect input argument.

® For the update_core_settings() ix, the inputs o LogUpdateCoreSettings are multiplied
by 10, but all come from the input parameters struct, where they're already all scaled to
FOUR_DECIMALS.

® For the update_oracle() ix, there is no constraint forcing the oracle to match the
stored oracle_program.

Recommendations:

Add constraints to ensure that the input struct/account fields match the input
accounts/arguments

Fluid: Resolved with , , ,
, and

A Zenith 66

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/context.rs#L17-L20
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/module/admin.rs#L562-L565
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/ca3cc093234b0054cabb4c999c07c6159b3876eb
https://github.com/Instadapp/fluid-contracts-solana/commit/3865cb916aab44ffc899889eaaa7c7f70131a79a#diff-094ff655a8c2aa00d9ffec56d1a6cb92657663457ae16b9d8f75ff7070398e27
https://github.com/Instadapp/fluid-contracts-solana/commit/50187fee83d68f8f4bdb477b6de68d8306d8480d
https://github.com/Instadapp/fluid-contracts-solana/pull/58/commits/a78dc328f41454339bd26f7d66ddd7e1ad119a89
https://github.com/Instadapp/fluid-contracts-solana/pull/58/commits/a8166fce9481852b61feffe3585ab2ce1d6b71d3

FLUID

SMART CONTRACT SECURITY ASSESSMENT

VERSION 1.1

Zenith: Verified.

A Zenith

67

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target
[]
Description:

In the init_lending instruction, the f_token_mint account is initialized using the provided
token_program. However, there is no check to ensure that this token_program matches the
token program associated with the mint. If f_token_mint and mint are created using
different foken programs, subsequent instructions such as Deposit will fail.

pub struct InitLending<'info> {
// @dev Only the auths can initialize the lending
#laccount(mut, constraint = lending_admin.auths.contains(&signer.key())
@ ErrorCodes::FTokenOnlyAuth)]
pub signer: Signer<'info>,

#[account(has_one = liquidity_ program.key())]
pub lending_admin: Account<'info, LendingAdmin>,

pub mint: InterfaceAccount<'info, Mint>,

#[account (
init,
seeds = [F_TOKEN_MINT_SEED, mint.key().as_ref()],
bump,
payer = signer,
mint::decimals = mint.decimals,
mint::authority = lending_admin,
mint:: token_program = token_program,
)1

pub f_token_mint: Box<InterfaceAccount<'info, Mint>>,

A Zenith 68

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/state/context.rs#L49

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Recommendations:

It is recommended to add a constraint to ensure that the f_token_mint is initialized using
the same token program as the mint account.

Fluid: Resolved with
Zenith: Verified.

A Zenith

69

https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/56ccd1d5fabfc858444625ec1e26eb0d2d7a12c7

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target

Description:

During the init_new_protocol() instruction, the Mints associated with the supply and
borrow positions are required fo be equal. However, during the pause_user()
instruction, only one Mint can be supplied, and it's used for PDAs, and both supplies
are required to be paused at the . This behavior differs from the solidity code,
which either one or both supplies to be paused at a time.

Recommendations:

Introduce a flag to the pause_user() instruction indicating that either one or both supplies
should be paused, or document the difference, with regard to the solidity code, in a code
comment.

Fluid: Resolved with , , and

Zenith: Verified.

A Zenith

/70

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/context.rs#L432-L435
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L71-L72
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/context.rs#L432-L435
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L720-L724
https://github.com/Instadapp/fluid-contracts-public/blob/98a5dae9448e5b1c4e354f8a00eb6515ca5e9b54/contracts/liquidity/adminModule/main.sol#L1092
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/4e50499e8bdad367a2b3a1aae5d0a0b2e33f9dbd
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/1a255df6bd90246f75b5199c3e48eb7d69e84851
https://github.com/Instadapp/fluid-contracts-solana/pull/58/commits/928623a29f03b3ed5f52cb69c2af59e3dc5c9ab4

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target

Description:

The hard-coded URI "https://fluid.io" is passed to the Metaplex program for all
fTokens. The metaplex program a per-token URI that points to a JSON document,
and neither of these expectations are fulfilled.

Recommendations:

{{ ... I Construct a per-fToken URI which points to a JSON document with the
metadata format.

Fluid: Resolved with

Zenith: Verified.

A Zenith

/1

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/state/context.rs#L115
https://developers.metaplex.com/token-metadata#a-json-standard
https://developers.metaplex.com/token-metadata/token-standard#the-fungible-standard
https://github.com/Instadapp/fluid-contracts-solana/pull/40/commits/4cefb7357c4cae5fe57e8254a8e128b6cfc9b894

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target
[]
[]
Description:

There are no constraints to force the token_reserves_liquidity account's owner to match
the liquidity_program input argument. This means that the lending program used by the
lending_admin may not match the token_reserves_liquidity, which will cause operations
involving reserves to be incorrect. Since only one fToken mint can be created for a given
underlying mint, and the init_lending() ix itself won't fail, in order to create a correct
fToken mint the lending program will have to be redeployed.

The vault program has a similar issue in that initialize_vault_admin() takes in an
arbitrary address as its 1iquidity parameter, but the use of UserSupplyPosition and
UserBorrowPosition in the Operate Accounts struct, and the use of TokenReserve in the
InitVaultStateContext Accounts struct means that only the
vault-compile-time-program-ID of the liquidity program can be used.

Recommendations:

For the lending program:

#laccount(has_one = mint)]
#[account(has_one = mint, owner = liquidity_program)]

pub token_reserves_liquidity: AccountlLoader<'info, TokenReserve>,

For the vault program, add a check to initialize_vault_admin() that ensures that the
parameter matches the compile-time-program-ID of the liquidity program.

Fluid: Resolved with
Zenith: Verified.

A Zenith

72

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/state/context.rs#L80-L81
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/module/admin.rs#L34
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/1ac36ee9d296ccb73b512354c1acf6a296c067cd

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Medium
Target
[]
Description:

In the operate instruction, withdrawing and borrowing to different addresses is allowed, but
this is incompatible with the CLAIM token transfer_type because this method requires
authorizing tokens to a single claim account, and only one claim account is defined in the
ctx.

#[derive(Accounts)]

#[instruction(_supply_amount: 1128, _borrow_amount: 1128, withdraw_to:
Pubkey, borrow_to: Pubkey, mint: Pubkey)]

pub struct Operate<'info> {

#[account(mut, has_one = mint)]
pub claim_account: AccountLoader<'info, UserClaim>,

pub token_program: Interface<'info, TokenInterface>,
pub associated_token_program: Program<'info, AssociatedToken>,

Recommendations:

It is recommended to define two claim accounts in the ctx to support the case where
withdrawing and borrowing addresses are different.

pub struct Operate<'info> {

#[account(mut, has_one = mint)]
pub claim_account: AccountLoader<'info, UserClaim>,

A Zenith 73

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/context.rs#L82

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

pub withdraw_claim_account: AccountlLoader<'info, UserClaim>,

#[account(mut, has_one = mint)]

pub borrow_claim_account: AccountlLoader<'info, UserClaim>,

pub token_program: Interface<'info, TokenInterface>,
pub associated_token_program: Program<'info, AssociatedToken>,

Fluid: Resolved with and

Zenith: Verified.

A Zenith 74

https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/8e7618716d15b447dd94368a818223005f0ca7c6
https://github.com/Instadapp/fluid-contracts-solana/pull/46/commits/3ff7ee74f00dd0a2c343bdc9e38a9be38ee0fa20

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target
[]
[]
Description:

The vault program has multiple places where it checks for and rejects the default PubKey,
but there are a few places without checks:

® initialize_vault_admin() - liquidity and authority
® init _vault_config() - params.supply_token, params.borrow_token, params.oracles,
params.oracle_program, params.rebalancer

® update_oracle() - new_oracle

The oracle program is missing a check in the init_admin() ix.

Recommendations:
Add the missing checks

Fluid: Resolved with , , , and

Zenith: Verified.

A Zenith

75

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/module/admin.rs#L33-L34
https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/oracle/src/lib.rs#L27
https://github.com/Instadapp/fluid-contracts-solana/commit/1ac36ee9d296ccb73b512354c1acf6a296c067cd
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/f655ca4d54e131f6fc7c04f193c099e40d56f820
https://github.com/Instadapp/fluid-contracts-solana/commit/ca3cc093234b0054cabb4c999c07c6159b3876eb
https://github.com/Instadapp/fluid-contracts-solana/pull/62/commits/df2b8741a7c2646e130a1eed53ed364397e50b95

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target
[]
Description:

In the init_vault_state() instruction, the supply/borrow_token_reserves_liquidity
liquidity program TokenReserve accounts are loaded, and the values they currently have
stored for their supply/borrow_exchange_price fields are stored, without modification, to
the vault's vaultState account. It is possible that the stored value is from a timestamp far in
the past, or that the vaules were from very different timestamps in the past. When the
actual exchange price for the vault is calculated, it magnification factors to the
difference in price between the stored price and the current live price. This means that the
magnification may be applied to price growth that occurred prior to the vault's creation.

Recommendations:

Use the results of calculate_exchange_prices(), rather than using the reserve accounts'
fields.

Fluid: Resolved with
Zenith: Verified.

A Zenith

76

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/module/admin.rs#L131-L142
https://github.com/Instadapp/fluid-contracts-solana/blob/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/vault_state.rs#L318-L341
https://github.com/Instadapp/fluid-contracts-solana/pull/40/commits/f4c77f677ac9fbe10cdd68e89a792bf1e5f721c6

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target

Description:

The withdrawal_cap field is meant to be capped at , but is actually capped at 102.3%
due to the copying of a bug in the code. Both the init_vault_config() and
update_core_settings() instructions have the bug, but update_withdraw_gap() does not.

Recommendations:

Use THREE_DECIMALS rather than x10 for this parameter's validations.
Fluid: Resolved with

Zenith: Verified.

A Zenith 77

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/module/admin.rs#L76
https://github.com/Instadapp/fluid-contracts-public/blob/98a5dae9448e5b1c4e354f8a00eb6515ca5e9b54/contracts/protocols/vault/vaultT1/adminModule/main.sol#L143
https://github.com/Instadapp/fluid-contracts-public/blob/98a5dae9448e5b1c4e354f8a00eb6515ca5e9b54/contracts/protocols/vault/vaultT1/adminModule/main.sol#L215
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/a1acb78118af01794d018f806142dbe3f0d3bbcb

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target

Description:

The liquidity layer is coded such that both legacy and token-2022 tokens can be used a
supply or borrow tokens. The vault code allows these Mint accounts to be passed as
InterfaceAccount accounts, but when it comes to verification of the ATAs, it forces both

ATAs to use the token_program, effectively preventing the use of multiple token
versions.
Recommendations:

Add supply_token_program and borrow_token_program accounts to the Operate and
Liquidate Accounts structs.

Fluid: Resolved with

Zenith: Verified.

A Zenith

78

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/context.rs#L276-L292
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/context.rs#L276-L292
https://github.com/Instadapp/fluid-contracts-solana/pull/40/commits/9e5659f380ead0987546f5f18da2593db87b3264

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Low IMPACT: Low
STATUS: Acknowledged LIKELIHOOD: Low
Target

Description:

In the case of a protocol key compromise, there is no function that allows the changing of
each vault's authority address.

Recommendations:
Add a function to modify the vault's authority

Fluid: Acknowledged. All program authorities will be set fo a team controlled multi sig.
Moreover if needed, we can add support for authority migration in a future upgrade.

A Zenith

79

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/module/admin.rs#L33

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Acknowledged LIKELIHOOD: Medium
Target
[}
Description:

The admins have the ability to call the update_user_supply_config and
update_user_borrow_config instructions to update the relevant values in
UserSupplyPosition or UserBorrowPosition, respectively. These values can potentially
impact the withdrawal and borrow limits - namely, the values of expand_pct,
expand_duration, and base_withdrawal_limit from UserSupplyPosition influence the
withdrawal limit, while expand_pct, expand_duration, base_debt_ceiling, and
max_debt_ceiling influence the borrow limit. Since the outcome limit is based on fime
elapsed between respective liquidity updates, the last_update value is tracked in both
account fypes and is updated every fime the limits are updated.

However, it is not updated when the key values are changed, which means that the next
fime the limit should be updated, it will use the newly updated changes, leading to
discrepancies and potentially undesired behavior. The following table demonstrates
changes fo values vs. expected values if expand_pct is changed:

A Zenith

80

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

action amount timestamp | expand_pct | expand_duration | last_updated base supply
supply 2000000 1000 5000 1200 0 1000000 2000000
withdraw, 1000000 1200 5000 1200 1000 1000000 1000000
withdrawsz 500000 1200 2500 1200 1000 1000000 1500000
withdrawg 12500000 1200 7500 1200 1000 1000000 750000

The table showcases how the limits change when the expand_pct field is changed at
timestamp 1200 (withdraw₂ and withdraw₃) vs. when it stays
the same (withdraw₁).

Recommendations:

Consider updating the withdraw and borrow limits, along with the last update time of these
accounts, when calling update_user_supply_config or update_user_borrow_config.

Fluid: Acknowledged

A Zenith 8]

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target
[]
Description:

The UserSupplyPosition and UserBorrowPosition accounts have their status fields set to
2 during , fo indicate that configuration has not yet been done. If a guardian or
governance ends up calling pause_user (), those accounts' status will be changed to 1
without storing the fact that it had been 2. When the user is eventually unpaused, the
status is changed to 0, regardless of whether it had been 2 prior to the pause. Having
configs_not_set() return false due to this change, will mean that initial configuration
setting will be

Recommendations:

Do not allow unconfigured users to be paused.
Fluid: Resolved with and
Zenith: Verified.

A Zenith 82

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L720-L724
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L80-L88
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L603-L610
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/698a5fb3443ae8a7a7467b67749e1a6ef46069fd
https://github.com/Instadapp/fluid-contracts-solana/commit/6223ecf0502a7e370a47eff2d4cba0e4ed3d0097

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target
[]
Description:

If the program ownership checks fail for any of the TickData PDAs read from
remaining_accounts, the get_ticks_from_remaining_accounts() function errors with
ErrorCodes :: VaultBranchOwnerNotValid, which is only supposed to be used by
get_branches_from_remaining_accounts().

Recommendations:

Add a vaultTickDataOwnerNotValid error to the ErrorCodes enum, and use it in the
function.

Fluid: Resolved with
Zenith: Verified.

A Zenith

83

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/tick.rs#L80-L82
https://github.com/Instadapp/fluid-contracts-solana/pull/40/commits/8e0bc0ac94964a207015e1a49ef77aa5c9e2dcec

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target
[}
[}
Description:
Unlike the Solidity version of vaults, the init_tick() instruction unconditionally initializes
total_ids fo . This means that when the operate() instruction reaches the
add_debt_to_tick() function, that function always finds that tick_id is greater than zero,
and thus if the position hasn't been liquidated, the execution flow goes fo the rather

than the else-block. As the comments indicate, the else block is supposed to be where the
first initialization occurs. There are no negative effects of the current processing, however,

because update_tick_has_debt () ends up being called in both blocks, and this is the only
processing that needs to occur for initialization, given the tick_id is already non-zero.

Recommendations:

Remove the tick_id > @ checks in this function since the result will always be true, and
update the comments to reflect the actual flows.

Fluid: Resolved with and

Zenith: Verified.

A Zenith

84

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/module/admin.rs#L211
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/utils/operate.rs#L177-L189
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/module/admin.rs#L211
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/utils/operate.rs#L177-L187
https://github.com/Instadapp/fluid-contracts-solana/pull/41/commits/e03f7a155f4753d1ccf69f9384d792ba153b483d
https://github.com/Instadapp/fluid-contracts-solana/pull/41/commits/13b7d96b16de3ab307e1ef817cc344c39b147a06

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low

Target
[]
[]

Description:

During initialization, the init_liquidity() function the 1liquidity.authority to both

the auth_list.auth_users and auth_list.auth_guardians, but there are no checks in
update_auths() or update_guardians() to ensure that the governance address is still
present. Unlike the , it's possible to remove all users from both the auth and
guardian roles, permanently removing the ability to pause the program in case of
emergencies.

The lending program has an issue with its update_auths () instruction.

Recommendations:

Do not allow the governance address to be removed during update_auths() and
update_guardians() for either program.

Fluid: Resolved with and

Zenith: Verified

A Zenith

85

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L117-L153
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/module/admin.rs#L100
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L45-L46
https://github.com/Instadapp/fluid-contracts-public/blob/98a5dae9448e5b1c4e354f8a00eb6515ca5e9b54/contracts/liquidity/adminModule/main.sol#L359-L361
https://github.com/Instadapp/fluid-contracts-public/blob/98a5dae9448e5b1c4e354f8a00eb6515ca5e9b54/contracts/liquidity/adminModule/main.sol#L1070-L1072
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/module/admin.rs#L100
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/a6fd1b219948a76b85000dcfcda7b5075606fbfe
https://github.com/Instadapp/fluid-contracts-solana/commit/6e69529bc96d9ce6af9db53264b8ee8d005b0fe5

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target

Description:

The instruction of the LRRM program accepts any account
as the . Although the inline comment says it is checked during the lending
program invoke, this is not true, as we can see at the

This means that the transition can call into any program, which can mean that the desired
update of the specific Lending account won't occur, meaning the rewards for the period
between lending's last update and the current reward's end time won't be accounted for.
The impact is not significant since the Lending account is updated frequently with every
liquidity operation, hence the low severity rafing.

Recommendations:
Consider restricting the 1ending_program to be the correct and expected lending program.
Fluid: Resolved with

Zenith: Verified.

A Zenith

86

https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/lendingRewardRateModel/src/state/context.rs#L286
https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/lendingRewardRateModel/src/lib.rs#L126
https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/lendingRewardRateModel/src/state/context.rs#L286
https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/lendingRewardRateModel/src/invokes/lending.rs#L25-L58
https://github.com/Instadapp/fluid-contracts-solana/commit/709c3d3c8f8e8b128d4859daa4ee8d781e253795

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target
[]
Description:

Unlike TransitionToNextRewards.next (), which calls update_rate() so that the prior
period's rewards are checkpointed, the start () function does not do any checkpointing of
the prior rewards. If there are no new mints or burns for the prior period's duration, when
the new start() period's settings get configured, the old rewards will never have been
doled out. If there are queued rewards, the function does not clear them.

Recommendations:

Call update_rate() if there already are settings, or only allow start() to be called once
(require all subsequent changes to use next (). Also consider erroring if there are queued
rewards.

Fluid: Resolved with and

Zenith: Verified.

A Zenith 87

https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/lendingRewardRateModel/src/state/context.rs#L144
https://github.com/Instadapp/fluid-contracts-solana/commit/6e84bcffaed8f1e7c597d3761d82c5f0f12653f4
https://github.com/Instadapp/fluid-contracts-solana/commit/27ffd7ef94302b04d977b0cc94d52b816b314f58

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target

Description:

All open TODOs should be addressed before deployment:

Adding a confidence check is recommended since the aggregation algorithm is essentially
a , which may not actually be the right price to use if all prices are equally
spaced, and very far apart from each other. Consider, at least, disallowing new debt
positions if the confidence interval is much larger than expected.

Any licensing issues should be resolved as soon as possible.

Recommendations:
Address the TODOs
Fluid: Resolved with , , and

Zenith: Verified.

A Zenith a8

https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/oracle/src/modules/pyth.rs#L38
https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/crates/library/src/math/u256.rs#L14
https://pythnetwork.medium.com/pyth-price-aggregation-proposal-770bfb686641
https://github.com/Instadapp/fluid-contracts-solana/commit/86913c5b14bf64d716afdc74b0b974ea7cbbe7ec
https://github.com/Instadapp/fluid-contracts-solana/commit/9e6049b50305d31779be45db20196ad245e70e16
https://github.com/Instadapp/fluid-contracts-solana/pull/47/files#diff-4dd85a16b7bac756b67cdb09d07860a25f9ae6c5f7c11eb6b058b5ce0312da5f

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Resolved LIKELIHOOD: Low
Target
[]
[]
[)
[)
Description:
The account uses the #[max_1len] attribute to allow anchor to calculate

the right size to allocate, but the various instructions for updating the account's fields never
ensure their sizes fall within the expected bounds. Even though user_classes is limited to
100 entries, many more entries can be added, as long as the serialized size of the updated
data fits within the account's size. If foo many entries are added to user_classes, this may
permanently prevent further entries from being added to auth_users and guardians, since
once created, user classes cannot be removed.

The 's and 's auths fields are also missing bounds
checks during updates, which will result in serialization failure errors, rather than with a
descriptive error, when too many entries are added

Recommendations:

Require that the vector lengths respect the allocated maximums, in update_auths (),
update_guardians(), update_user_class(), and the update_auths() functions for lending
and rewards admins.

Fluid: Resolved with
Zenith: Verified.

A Zenith 89

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/state.rs#L35-L40
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L357-L360
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/state/state.rs#L19
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lendingRewardRateModel/src/state/state.rs#L10
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/state.rs#L35-L40
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/state/state.rs#L19
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lendingRewardRateModel/src/state/state.rs#L10
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/9ad38077b4169614fc44e9ffeb3957c09ac29cd1

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Low IMPACT: Low
STATUS: Acknowledged LIKELIHOOD: Low

Target

[]

[}

[}

Description:

The various programs in the project rely on the library crate for low-level operations,
including math and token transfers. The library crate defines its own ErrorCodes enum for
the errors it produces, but none of the programs calling these functions convert the
library's error codes to their own. This will, for instance, result in cast () failures appearing
1o be UserClassNotFound failures, rather than LibraryCastingFailure ones, since the IDL
only includes the error code enum values from the current program. In addition, the library
itself does not convert its own CPI failures to its own error codes, which complicates error
handling.

The vault program also does SPL-related operations without converting those CPI failures.

Recommendations:

Use map_err() to convert between error enums, or use thiserror's attribute.

Fluid: Acknowledged

A Zenith

Q0

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/library/src/errors.rs#L5-L12
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/library/src/token/spl.rs#L60-L89
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/invokes/mint.rs#L31-L63
https://docs.rs/thiserror/latest/thiserror/#details

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

4.5 Informational

A total of 12 informational findings were identified.

[I-1] Typos
SEVERITY: Informational IMPACT: Informational
STATUS: Resolved LIKELIHOOD: Low
Target

® programs/**/*.rs

Description:
The following typos were identified:

recepient -> recipient

pub recepient: AccountInfo<'info>,

pub recepient: Pubkey,

pub recepient_token_account: Box<InterfaceAccount<'info, TokenAccount>>,

pub fn claim(ctx: Context<Claim>, mint: Pubkey, recepient: Pubkey) —
Result<()> {

liqudity -> liquidity
// the liqudity PDA owns the authority to transfer the tokens
dvision -> division

// easy to check as that variable is NOT the result of a dvision etc.

A Zenith o]

https://github.com/Instadapp/fluid-contracts-solana/tree/eac06944dcf6aaadc4bbf885f41f563836177c84/programs

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

bororwers -> borrowers

// borrowRatio_ = x of total bororwers paying yield. scale to 1eil7.

atleast -> at least

// ... needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256

receipient -> recipient

pub receipient_token_account: Box<InterfaceAccount<'info, TokenAccount>>,

ratemodel -> rate model

/// @dev To read PDA of rewards ratemodel to get_rate instruction

assset -> asset

/// @dev exchange price for the underlying assset in the liquidity protocol
(without rewards)

resuing -> reusing

// This let us save on two extra accounts, hence resuing existing to built
the correct accounts context.

Address if -> Address of

pub liquidity_program: Pubkey, // Address if liquidity program

to built -> to build

// This let us save on two extra accounts, hence resuing existing to built
the correct accounts context.

AccountInfo -> UncheckedAccount

// Hence loading them as AccountInfo

slightlty -> slightly

A Zenith

92

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

// partials precision is slightlty above 1e9 so this will make sure that on
every liquidation atleast 1 partial gets liquidated

supplt_position -> supply_position

let supplt_position =
ctx.accounts.vault supply position_on_liquidity.load()?;

coeffcient -> coefficient

pub debt_liquidity: u64, // Debt liquidity at this branch, 56 coeffcient | 8
exponent

pratials -> partials

pub fn get_current_pratials_ratio(minima_tick_partials: u32, ratio: u128)
— Result<(u128, u128)> {

acccount -> account

// No init_if needed, as the acccount supplying must already exist in order
to supply

recepient -> recipient

pub recepient: AccountInfo<'info>,

receipient -> recipient

pub receipient_borrow_token_account: Box<InterfaceAccount<'info,
TokenAccount>>,

sence -> since

// sence sending vault supply token_account here as a dummy value

liquidiation -> liquidation

// get liquidiation max limit tick (tick at liquidation max limit ratio)

Parms -> Params

A Zenith

Q3

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

pub struct InitVaultConfigParms {

udpate -> update

pub fn udpate state at liq end(&mut self, tick: 132, branch_id: u32)
Result<()> {

substraction -> subtraction

// liquidity Exchange Prices always increases in next block. Hence
substraction with old will never be negative

liquidityWithdrawalimit -> liquidityWithdrawallimit

-

// (liquidityUserSupply - withdrawalGap - liquidityWithdrawalimit) should be

less than user's withdrawal

remainining_accounts -> remaining_accounts

let remainining_accounts = ctx

is_iquidate -> is_liquidate

fn get_exchange_rate(&self, nonce: ul16, is_iquidate: bool) — Result<u128> {

Recommendations:
We recommend fixing the typos.

Fluid: Resolved with @20930e2d0af... and @a3392bec9a6...

Zenith: Verified.

A Zenith

94

https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/a0930e2d0af17a239ca07e59a21b705f76bcbda2
https://github.com/Instadapp/fluid-contracts-solana/pull/59/commits/a3392bee9a612c8c15560038263817c2a531e465

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Informational IMPACT: Informational
STATUS: Resolved LIKELIHOOD: Low
Target

Description:

The targets listed above point to code that is never executed, which adds unnecessary
cognitive load during reviews.

Recommendations:

Remove the unused code, or refactor/rewrite other code to call the functions/use the errors.
Fluid: Resolved with and

Zenith: Verified.

A Zenith 95

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/library/src/math/safe_math.rs#L97-L125
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/state.rs#L14-L24
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/token_reserve.rs#L525-L537
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/state/state.rs#L3-L8
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/state/seeds.rs#L8
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/errors.rs#L19-L20
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/errors.rs#L138
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/errors.rs#L156
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/errors.rs#L180
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/events.rs#L97
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/branch.rs#L78-L81
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/88d2665d99aa67f30927ceee615d6bf03164819e
https://github.com/Instadapp/fluid-contracts-solana/pull/62/commits/6cc13dad1367805dad2badd7e95f145027b1e4a1

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Informational IMPACT: Informational

STATUS: Resolved LIKELIHOOD: Low
Target

[]

[]

[]

[]

[]
Description:

The UpdateAuth, UpdateRevenueCollector, UpdateUserClass, UpdateUserWithdrawallLimit,
UpdateUserSupplyConfig, UpdateUserBorrowConfig,
UpdateExchangePrice,UpdateRateData, UpdateTokenConfig, ChangeStatus, PauseUser,
AdminContext, UpdateAuths, StopLendingRewards, and LendingRewards Accounts structs all
include a mutable authority account, even though their respective instructions never
modify their authority accounts. This will lead to unnecessary transaction contention,
possibly leading to higher transaction costs required for these instructions.

In addition, the PreOperate.protocol, PreOperate.vault, Operate.protocol,
Operate.liqudity, Claim.user, UpdateRewardsRateModel.signer, UpdateAuth.signer,
UpdateRebalancer.signer, Withdraw.rate_model, UpdateRate.signer,
UpdateRate.f_token_mint, InitLending.lending_admin, InitLending.mint,
InitPosition.vault_admin, Operate.vault_config, Operate.tick_id_data,
Operate.supply_rate_model, Operate.borrow_rate model, Operate.liquidity (once
liquidity's Operate.liquidity stops being mutable), Operate.liquidity_program,
Liquidate.vault_config, Liquidate.supply_token, Liquidate.borrow_token,
Liquidate.top_tick_data, Liquidate.supply_rate_model, Liquidate.borrow_rate_model,
Liquidate.liquidity (once liquidity's Operate.liquidity stops being mutable),
Liquidate.liquidity_program, OracleInit.oracle_admin, and
LendingRewards.lending_rewards_admin accounts need not be mutable.

Recommendations:
Remove the mut modifier from the listed accounts.

Fluid: Resolved with , , and

A Zenith

96

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/context.rs
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/state/context.rs
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/context.rs#L572
https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/oracle/src/state/context.rs
https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/lendingRewardRateModel/src/state/context.rs
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/dd092438d1d585ac069b9f14d8ff42e5956e3e63
https://github.com/Instadapp/fluid-contracts-solana/commit/b0881dfdb6bcda60bbf826097d709ddd3e814f83
https://github.com/Instadapp/fluid-contracts-solana/pull/62

FLUID

SMART CONTRACT SECURITY ASSESSMENT

VERSION 1.1

Zenith: Verified.

A Zenith

97

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[I-4] Delayed reward distribution may temporarily prevent
withdrawals

SEVERITY: Informational IMPACT: Informational
STATUS: Acknowledged LIKELIHOOD: Low
Target

® helpers.rs

Description:

For a given token's lending, in addition to earning interest from the liquidity, extra rewards
can also be flexibly configured through the lendingRewardRateModel. These rewards
increase the price of the f_token over time.

fn calculate new_token_exchange price(
new_liquidity_exchange_price: u64,
lending: &Account<Lending>,
current_rate_model: &Account<LendingRewardsRateModel>,
f_token_total_supply: u64,

) — Result<(u64, bool)> {

let total_return_in_percent = total_return_from_rewards.safe add/(
new_liquidity_exchange_price
.safe_sub(old_liquidity_exchange_price)?
.cast::<u128>()?
.safe_mul(RETURN_PERCENT_PRECISION)?
.safe div(old_liquidity_exchange price.cast()?)?
.cast()?,
)?;
let new_token_exchange price: u64 = old token_exchange price.safe add(
old_token_exchange_price
.cast::<u128>()?
.safe_mul(total_return_in_percent.cast()?)?
.safe_div(RETURN_PERCENT_PRECISION)?
.cast()?,
)?;

Ok ((new_token_exchange_price, rewards_ended))

A Zenith

38

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/utils/helpers.rs#L155

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

However, the reward tokens are not distributed when the rewards are enabled. Instead,
they are distributed through an off-chain bot via the rebalance instruction. If the
distribution is delayed, it could, in extreme cases, result in the position not holding enough
tokens fo allow all users to withdraw.

Recommendations:
It is recommended to improve the reward distribution method.

Fluid: Acknowledged

A Zenith

Q9

FLUID SMART CONTRACT SECURITY ASSESSMENT

VERSION 1.1

SEVERITY: Informational

STATUS: Resolved

Target

Description:

IMPACT: Informational

LIKELIHOOD: Low

When only supplying tokens, the withdraw_to_account, borrow_to_account, and
claim_account are not used. If the transferType is not CLAIM, there is no need to pass in
the claim_account. However, every time Operate is called, these accounts are still required

to be passed in, which may cause inconvenience.

pub struct Operate<'info> {

#[account(
mut,

associated_token::mint = mint,

associated_token::authority = withdraw_to,
associated_token:: token_program = token_program

)]

pub withdraw_to_account:

#[account (
mut,

associated_token::mint
associated_token::authority
associated_token:: token_program

)]

Box<InterfaceAccount<'info, TokenAccount>>,

borrow_to,
token_program

pub borrow_to_account: Box<InterfaceAccount<'info, TokenAccount>>,

#[account(mut, has_one = mint)]

pub claim_account: AccountlLoader<'info, UserClaim>,

pub token_program: Interface<'info, TokenInterface>,

pub associated_token_program:

Program<'info, AssociatedToken>,

A Zenith

100

https://github.com/Instadapp/fluid-contracts-solana/blob/audit/programs/liquidity/src/state/context.rs

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Recommendations:

It is recommended to make these accounts optional by using Option, allowing them to be
provided only when needed.

Fluid: Resolved with

Zenith: Verified.

A Zenith 101

https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/bdf526de47898007a17b289104b2d38e053c09a8

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Informational IMPACT: Informational
STATUS: Resolved LIKELIHOOD: Low

Target

[]

[]

[]

Description:

The update_exchange_price () requires an authority signer, but the instruction is meant to
be permissionless, and thus the account is never checked against anything.

The InitLending.associated_token_program, UpdateRate.signer,
Deposit.borrow_token_reserves_liquidity, and Liquidate.vault_admin accounts are
also unused.

The Liquidate.top_tick_data doesn't have any constraints that force it to match the
topmost tick, so any TickData from the vault can be passed. Outside of being loaded to
confirm ownership and PDA validity in verify_liquidate(), it's not used for anything.

Recommendations:
Remove the unused accounts.
Fluid: Resolved with , , and

Zenith: Verified.

A Zenith

102

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/context.rs#L442
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/state/context.rs#L84
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/context.rs#L545
https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/6e523fbe7e166884669a7cb1047d72eca0b27880
https://github.com/Instadapp/fluid-contracts-solana/commit/acb79b768db44341327b0ce9b57dffc6de1725f6
https://github.com/Instadapp/fluid-contracts-solana/commit/3bcc21a8edf4805c4478888b3d378a72b3a6369b

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Informational IMPACT: Informational
STATUS: Resolved LIKELIHOOD: Low

Target

[)

[)

[)

[)

[)

[]

[]

[]

[]

[)

[)

[)

[)

[)

Description:

The RateModel, AuthorizationList, UserClaim, TokenReserve, UserBorrowPosition,
UserSupplyPosition, BranchData, TickHasDebtArray, VaultState, TickData, UserPosition,
Oracle, LendingRewardsAdmin, and LendingRewardsRateModel accounts all contain a bump
field which costs rent and adds CU overhead, but isn't actually used anywhere.
Lending.borrow_position_on_liquidity and VaultState.total_positions are also
unused.

The LendingRewardsAdmin.lending_program is also unused. It looks as though the
update_rate() function is meant to work with any lending program rather than only the
compile-time one. If so, this field should be removed. If not, then the various instructions
calling that function should constrain the input arg to match that member, and the CPI
should be done with the crate's CPl method rather than the generic invoke ().

A Zenith 103

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/state.rs#L42
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/rate_model.rs#L26
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/token_reserve.rs#L41
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/user_borrow_position.rs#L27
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/state/user_supply_position.rs#L32
https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/state/state.rs#L49
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/vault_state.rs#L38
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/branch.rs#L34
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/tick_has_debt.rs#L40
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/vault_state.rs#L38
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/tick.rs#L25
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/position.rs#L26
https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/oracle/src/state/state.rs#L12
https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/lendingRewardRateModel/src/state/state.rs#L15

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Recommendations:
Remove the fields from the listed structs, and the code that sets their values.

Fluid: Resolved with and . Acknowledging
LendingRewardsAdmin.bump, Oracle.bump, and LendingRewardsRateModel.bump.

Zenith: Verified resolved instances.

A Zenith 104

https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/5921357d276405bc593c65c5d5efb8c6911aa188
https://github.com/Instadapp/fluid-contracts-solana/pull/45/commits/0946eab44bc81f6b3f347487dc905567c59580a0

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[I-8] The init_token_reserve instruction does not check
whether the token decimals are supported

SEVERITY: Informational IMPACT: Informational
STATUS: Resolved LIKELIHOOD: Low
Target
® admin.rs
Description:

The init_token_reserve instruction initializes the token_reserve and rate_model accounts
for the corresponding token but does not call check_token_decimals_range fo verify
whether the token decimals are supported. This check is only performed later when the
update_rate_data instruction is called.

pub fn init token_reserve(context: Context<InitTokenReserve>) — Result<()>
{

let mut token_reserve = context.accounts.token_reserve.load init()?;

token_reserve.mint = context.accounts.mint.key();

token_reserve.vault = context.accounts.vault.key();

token_reserve.bump = context.bumps.token_reserve;
token_reserve.last_update_timestamp

= Clock::get()?.unix_timestamp.cast()?;
token_reserve.supply_exchange_price = EXCHANGE_PRICES PRECISION.cast()?;
token_reserve.borrow_exchange_price = EXCHANGE PRICES PRECISION.cast()?;

let mut rate_model = context.accounts.rate_model.load init()?;

rate_model.mint = context.accounts.mint.key();
rate_model.bump = context.bumps.rate_model;

0ok(())

pub fn update_rate_data_v1(
context: Context<UpdateRateData>,
rate_data: RateDataViParams,

) — Result<()> {

A Zenith 105

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/module/admin.rs#L51

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

check_token_decimals_range(&context.accounts.mint)?;

If token_reserve and rate_model accounts are initialized for an unsupported token, the
issue will only be detected upon calling update_rate_data, resulting in wasted rent and
transaction fees for the admin.

Recommendations:

It is recommended to call check_token_decimals_range during the init_token_reserve
instruction to verify whether the token decimals are supported.

Fluid: Resolved with
Zenith: Verified.

A Zenith 106

https://github.com/Instadapp/fluid-contracts-solana/pull/38/commits/62dd8a70cab0951b0f0ab7f5a399cb48e2be9318

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Informational IMPACT: Informational
STATUS: Resolved LIKELIHOOD: Low
Target
[]
[]
Description:

The following comments are misleading, which adds unnecessary cognitive load during
reviews:

® |n the Deposit and Withdraw structs, the address constraint is on the lending_admin
member, but for this instruction they were moved, but the comment was never removed:

#[account(mut, address = lending_admin.liquidity_program)]
/// CHECK: Safe, we check the address in the lending_admin PDA
pub liquidity_program: AccountInfo<'info>,

® The instruction's supply_token_reserves_liquidity is never used in any CPI calls:

#[account(has_one = mint)]
/// CHECK: Safe as this will be verified in liquidity program CPI call
pub supply_ token_reserves_liquidity: AccountLoader<'info, TokenReserve>,

® This comment looks like it was a left-over from a refactoring:

pub oracle: Pubkey, // Oracle PDA hops, maximum 4

Recommendations:
Update the comments to reflect the current behavior.

Fluid: Resolved with and

A Zenith 107

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/lending/src/state/context.rs
https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/vaults/src/state/vault_config.rs#L17
https://github.com/Instadapp/fluid-contracts-solana/commit/6e0cb69344f26e724e6fb992c498ede5f34e77a6
https://github.com/Instadapp/fluid-contracts-solana/commit/35abf6da66848667821b51deb8384a1051cda4b2

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Zenith: Verified.

A Zenith 108

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

[I-10] Unhandled sKIP token transfer_type

SEVERITY: Informational IMPACT: Informational
STATUS: Acknowledged LIKELIHOOD: Low
Target
® token.rs
Description:

The transfer_type enum defines three types.

pub enum TransferType {
SKIP, // skip transfer
DIRECT, // transfer directly to the user (no claim)
CLAIM, // transfer to claim account and then can be claimed by user

later

However, in handle_transfer_or_claim only the other two types of transfers are handled.
The SKIP type transfer is not processed, which may cause errors when this type of transfer
is used in integration.

pub fn handle_transfer_or_claim(
transfer_type: &TransferType,
claimer: Pubkey,
claim_account: &mut AccountLoader<UserClaim>,
last_stored_claim _amount: u64,
transfer_params: TokenTransferParams,

) — Result<u64> {

match transfer_ type {
TransferType:: DIRECT = {
transfer_spl_tokens(transfer_params)?;
0k (0)
}
TransferType:: CLAIM = {
let mut claim_account = claim_account.load mut()?;

A Zenith

109

https://github.com/Instadapp/fluid-contracts-solana/blob/eac06944dcf6aaadc4bbf885f41f563836177c84/programs/liquidity/src/utils/token.rs#L25

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

if claim_account.user == claimer {
return Err(ErrorCodes::InvalidUserClaim.into());

}

claim_account.approve(transfer_params.amount)?;
return Ok(transfer_params.amount) ;

_ = return Err(ErrorCodes:: InvalidTransferType.into()),

Recommendations:

It is recommended to either remove the SKIP transfer_type or implement the
corresponding handling logic.

Fluid: Acknowledged

A Zenith 110

FLUID SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1
SEVERITY: Informational IMPACT: Informational
STATUS: Acknowledged LIKELIHOOD: Low
Target
[}
Description:

The AuthorizationList.user_classes account field is meant to track which liquidity
program users are allowed to be paused. If there is no entry, it defaults to allowed, but if it's
set to one for a user, that user cannot be paused. For every fToken (one per liquidity supply
token) and for every vault (one per supply-and-borrow token pair), a new protocol/user is
created in the liquidity program. Currently, according to fluid.io, for Solidity there are six
fTokens, and 85 vaults. If the Solana version of fluid is as successful or greater over time,
and a lot of user classes need to be set to unpauseable, the AuthorizationList PDA may
run out of space.

Recommendations:
Significantly increase the size of the user_classes field.

Fluid: Acknowledged. This feature is rarely used we typically don't list users as
un-pausable, and by default all users can be paused, which is the intended behavior. Given
this, the current field size has been sufficient. If ever required, we can expand the field in a
future upgrade.

A Zenith

M

https://github.com/Instadapp/fluid-contracts-solana/blob/0c2bbd716663329e56d73bd90a5671543d822e9a/programs/liquidity/src/state/state.rs#L39-L40

FLUID

SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Informational IMPACT: Informational
STATUS: Resolved LIKELIHOOD: Low
Target

Description:

The rewards calculation for both the prior (or current) and the current (or next period), use
the TVL calculated using the prior exchange prices. Consider the case where the TVL is
right above the cutoff, but then a user withdraws such that the TVL is now just below the
limit. If there are no mints or burns until after the queued rewards period has elapsed, there
will be zero rewards even though it is likely that, due to interest growth, TVL will grow above
the limit without a new mint needing to occur.

Recommendations:

If this is expected behavior, it might be worth while to document in a code comment that
the update_rate() instruction can be used to get credit for TVL growth due to interest.

Fluid: We've added the comment here: . The start_tvl is only used to
set some minimal realistic amount to avoid any weird edge cases, by default this has always
been set to ~$1k worth of the token. Realistically, we can assume that any fToken that gets
rewards, has a TVL way above the configured start_tvl. Using the older exchange price is
then actually beneficial to users as they get accounted a slightly higher rewards rate. Also,
we can assume frequent interactions on any fToken, especially on one that has active
rewards going on.

Zenith: Verified.

A Zenith

12

https://github.com/Instadapp/fluid-contracts-solana/blob/cac6efbb673bffd7b6a20c5ef63ef8ea3ec7c3a5/programs/lending/src/utils/helpers.rs#L110-L114
https://github.com/Instadapp/fluid-contracts-solana/commit/e143c8abe75e7af220dc1073ab2715c1c3445be0

	Introduction
	About Zenith
	Disclaimer
	Risk Classification

	Executive Summary
	About Jupiter
	Scope
	Audit Timeline
	Issues Found
	Audit Note

	Findings Summary
	Findings
	Critical Risk
	High Risk
	Medium Risk
	Low Risk
	Informational

