
OFFSIDE LABS

JupiterLend
Liquidity&Lending
Smart Contract
Security Assessment

August 2025

Prepared for:
Jupiter

Prepared by:
Offside Labs
Yao Li
Siji Feng

Contents

1 About Offside Labs 2

2 Executive Summary 3

3 Summary of Findings 5

4 Key Findings and Recommendations 6
4.1 Precision Error in supply_ratio May Lead to DoS 6
4.2 Token Reserve Should be Updated Before Config Updated 7
4.3 Lack of Rate Update in UpdateRewardsRateModel IX 8
4.4 Token Exchange Price Will be Incorrect When Update Time Range Crosses Re-

ward Period Boundary . 9
4.5 Precision Loss and Inflation Attack . 10
4.6 Incorrect Division Math Library . 11
4.7 NotSet Status Should be Blocked in Operate IX 12
4.8 Different Token Programs of mint and f_token_mint May Lead to DoS 13
4.9 Informational and Undetermined Issues . 14

5 Disclaimer 16

1 About Offside Labs

Offside Labs is a leading security research team, composed of top talented hackers from both
academia and industry.

We possess a wide range of expertise in modern software systems, including, but not limited
to, browsers, operating systems, IoT devices, and hypervisors. We are also at the forefront
of innovative areas like cryptocurrencies and blockchain technologies. Among our notable
accomplishments are remote jailbreaks of devices such as the iPhone and PlayStation 4, and
addressing critical vulnerabilities in the Tron Network.

Our team actively engages with and contributes to the security community. Having won and
also co-organized DEFCON CTF, the most famous CTF competition in the Web2 era, we also
triumphed in the ParadigmCTF 2023within theWeb3 space. In addition, our efforts in respon-
sibly disclosingnumerous vulnerabilities to leading tech companies, suchasApple,Google, and
Microsoft, have protected digital assets valued at over $300million.

In the transition towardsWeb3, Offside Labs has achieved remarkable success. Wehave earned
over$9million in bugbounties, and threeof our innovative techniqueswere recognizedamong
the top 10 blockchain hacking techniques of 2022 by the Web3 security community.

https://offside.io/

https://github.com/offsidelabs

https://twitter.com/offside_labs

OFFSIDE LABS 2

https://offside.io/
https://github.com/offsidelabs
https://twitter.com/offside_labs

2 Executive Summary

Introduction

Offside Labs completed a security audit of Fluid Solana smart contracts, starting on July 10th,
2025, and concluding on July 18th, 2025.

Project Overview

The Liquidity Layer of Fluid is a foundational component that consolidates liquidity across var-
ious protocols, enhancing capital efficiency, security, and user experience. It facilitates seam-
less interactions between protocols, allowing new innovations to be easily integrated while
maintaining automated limits to safeguard protocol funds. Additionally, the layer supports
diverse protocol designs and risk models, enabling versatile functionalities.

The lending protocol is a concise lend and earn protocol which provides direct access to Fluid’s
Liquidity Layer, enabling efficient and secure lending activities.

Audit Scope

The assessment scope contains mainly the smart contracts of the lending and liquidity pro-
gram for the Fluid Solana project.

The audit is based on the following specific branches and commit hashes of the codebase repos-
itories:

• Fluid Solana:
• Codebase: https://github.com/Instadapp/fluid-contracts-solana
• Branch: audit-2
• Commit Hash: 2475151aa56cba12688d7cdd1f8f319aec797b07

We listed the files we have audited below:

• Fluid Solana:
• programs/lending/src/*.rs
• programs/liquidity/src/*.rs
• programs/library/src/*.rs

Findings

The security audit revealed:

• 0 critical issue
• 0 high issue
• 5 medium issues
• 3 low issues
• 5 informational issues

OFFSIDE LABS 3

https://github.com/Instadapp/fluid-contracts-solana

Further details, including the nature of these issues and recommendations for their remedia-
tion, are detailed in the subsequent sections of this report.

OFFSIDE LABS 4

3 Summary of Findings

ID Title Severity Status

01 Precision Error in supply_ratio May Lead to DoS Medium Fixed

02 Token Reserve Should be Updated Before Config
Updated Medium Fixed

03 Lack of Rate Update in UpdateRewardsRateModel IX Medium Fixed

04 Token Exchange Price Will be Incorrect When
Update Time Range Crosses Reward Period Boundary Medium Fixed

05 Precision Loss and Inflation Attack Medium Partially Fixed

06 Incorrect Division Math Library Low Fixed

07 NotSet Status Should be Blocked in Operate IX Low Fixed

08 Different Token Programs of mint and f_token_mint
May Lead to DoS Low Fixed

09 unpause_user IX Can Skip User Position Config
NotSet Status Informational Fixed

10 Operate.protocol Can Not be Mutable Informational Fixed

11 Source Token Account of Rebalance Must be
Pre-initialized Informational Fixed

12 Overly Restrictive MIN_TOKEN_DECIMALS Informational Acknowledged

13 CPI Error Can Not be Captured Informational Acknowledged

OFFSIDE LABS 5

4 Key Findings and Recommendations

4.1 Precision Error in supply_ratioMay Lead to DoS

Severity: Medium Status: Fixed

Target: Liquidity Program Category: Precision Issue

Description

The get_supply_ratio function has a precision of 1e4, so when total_supply_with_

interest is less than 1 bps of total_supply_interest_free , the supply_ratio will
return 0.

The issue is that, if total_supply_with_interest is not 0, the function calculate_

exchange_prices calculates the reciprocal of the supply_ratio . Then it panics in this
case.

427 if self.total_supply_with_interest <

self.total_supply_interest_free {↪

428 // ratio is supplyWithInterest / supplyInterestFree

(supplyInterestFree is bigger)↪

429
430 let supply_ratio: u128 =

EXCHANGE_PRICE_RATE_OUTPUT_DECIMALS↪

431 .safe_mul(FOUR_DECIMALS)?

432 .safe_div(supply_ratio)?;

programs/liquidity/src/state/token_reserve.rs#L427-L432

Impact

Once the above conditions aremet, the entire protocol will cease all functionality due to the
inability to update the latest exchange price. This scenario typically occurs accidentally
during low-liquidity initialization, or could be exploited by malicious actors when there is
no upper limit on total_supply_interest_free . An attacker could intentionally flood
the protocol with excessive total_supply_interest_free liquidity to trigger the above
DoS condition.

Recommendation

Optimize the calculation in calculate_exchange_prices by simplifying formulas and
reducing division operations.

Mitigation Review Log

Fixed in commit 1ca22f9168fe9ee4be7ad0ac4acf33763f205efa.

OFFSIDE LABS 6

https://github.com/Instadapp/fluid-contracts-solana/blob/2475151aa56cba12688d7cdd1f8f319aec797b07/programs/liquidity/src/state/token_reserve.rs#L427-L432

4.2 Token Reserve Should be Updated Before ConfigUpdated

Severity: Medium Status: Fixed

Target: Liquidity Program Category: Logic Error

Description

The current implementation includesmultiple admin instructions forupdatingvarious con-
figurations, which can affect the calculation of exchange prices. However, the update flow
for some of these instructions is incorrect.

In the update_token_config instruction, the exchange prices (supply_exchange_price
and borrow_exchange_price) are updated, but critical related values like last_

utilization and borrow_rate are not updated, potentially leading to inconsistencies.

319 token_reserve.supply_exchange_price = supply_exchange_price;

320 token_reserve.borrow_exchange_price = borrow_exchange_price;

321 token_reserve.fee_on_interest = token_config.fee.cast()?;

322 token_reserve.max_utilization = token_config.max_utilization.cast()?;

323 token_reserve.last_update_timestamp =

Clock::get()?.unix_timestamp.cast()?;↪

programs/liquidity/src/module/admin.rs#L319-L323

In the update_user_supply_config and update_user_borrow_config instructions, ex-
change prices are expected to be updated based on the amounts before the configuration
changes (e.g., raw_interest and interest_free amounts). However, the current im-
plementation updates the exchange prices after modifying these amounts. This results in
one of the exchange prices being calculated incorrectly.

543 token_reserve.set_total_supply_with_interest(total_supply_raw_interest)?;

544 token_reserve.set_total_supply_interest_free(total_supply_interest_free)?;

545
546 let rate_model = context.accounts.rate_model.load()?;

547 // trigger update borrow rate, utilization, ratios etc.

548 token_reserve.update_exchange_prices_and_rates(&rate_model)?;

programs/liquidity/src/module/admin.rs#L543-L548

Impact

The incorrect flow for updating exchange prices can result in inaccurate exchange price
calculations.

Recommendation

Update the exchange prices and rates by update_exchange_prices_and_rates before
applying changes to the state.

OFFSIDE LABS 7

https://github.com/Instadapp/fluid-contracts-solana/blob/2475151aa56cba12688d7cdd1f8f319aec797b07/programs/liquidity/src/module/admin.rs#L319-L323
https://github.com/Instadapp/fluid-contracts-solana/blob/2475151aa56cba12688d7cdd1f8f319aec797b07/programs/liquidity/src/module/admin.rs#L543-L548

Mitigation Review Log

Fixed in commit 630b78c05ba0ef8a201a79924e3ce0dd24bf8747 and
1ca22f9168fe9ee4be7ad0ac4acf33763f205efa.

4.3 Lack of Rate Update in UpdateRewardsRateModel IX

Severity: Medium Status: Fixed

Target: Lending Program Category: Logic Error

Description

In the update_reward_rate_model instruction, the implementation simply replaces the
rewards_rate_model as shown below:

115 let lending = &mut ctx.accounts.lending;

116 lending.rewards_rate_model =

ctx.accounts.new_rewards_rate_model.key();↪

117
118 Ok(emit!(LogUpdateRewards {

119 rewards_rate_model: ctx.accounts.new_rewards_rate_model.key(),

120 }))

programs/lending/src/module/admin.rs#L115-L120

However, this implementation does not account for updating the reward rate if the old re-
ward model has been active during the time since last_update_timestamp . This over-
sight could cause discrepancies in the reward calculation.

Impact

Rewards accrued during the time since last_update_timestamp may not be correctly
distributed.

Recommendation

Consider the following improvements:

1. Force an update to the reward rate before changing the rewards_rate_model .
2. Addaparameter to the update_reward_rate_model instruction to determinewhether
the rate should be updated at the time of the model change.

Mitigation Review Log

Fluid Team: We do not expect that the rewards_rate_model is ever changed after setting it
for the first time.

OFFSIDE LABS 8

https://github.com/Instadapp/fluid-contracts-solana/blob/2475151aa56cba12688d7cdd1f8f319aec797b07/programs/lending/src/module/admin.rs#L115-L120

Fixed in commit d92e582b25db0cdafc227074246d0e862ef7c926.

4.4 Token Exchange Price Will be Incorrect When Update Time Range
Crosses Reward Period Boundary

Severity: Medium Status: Fixed

Target: Lending Program Category: Logic Error

Description

The current implementation of the token exchange price calculation has a logic flaw when
the time range since last_update_timestamp crosses a reward period boundary. Specif-
ically, the issue lies in how the rewards_rate is calculated based on the current time and
its reward period. The logic does not account for situations where the time range spans
multiple reward periods, leading to incorrect calculations.

The relevant code snippet is as follows:

116 let (mut rewards_rate, rewards_ended, rewards_start_time) =

current_rate_model.get_rate(↪

117 old_token_exchange_price

118 .cast::<u128>()?

119 .safe_mul(f_token_total_supply.cast()?)?

120 .safe_div(EXCHANGE_PRICES_PRECISION.cast()?)?

121 .cast()?,

122)?;

123
124 if rewards_rate > MAX_REWARDS_RATE.cast()? || rewards_ended {

125 // rewardsRate is capped, if it is bigger > MAX_REWARDS_RATE,

then the rewardsRateModel↪

126 // is configured wrongly (which should not be possible). Setting

rewards to 0 in that case here.↪

127 rewards_rate = 0;

128 }

programs/lending/src/utils/helpers.rs#L116-L128

If the last_update_timestamp falls within one reward period while the current time falls
in a subsequent reward period (or beyond the end time of any reward period), the entire
duration between last_update_timestamp and the current time will incorrectly use the
reward rate of the current period. This ignores the portion of time that should have been
calculated using the previous reward rate.

OFFSIDE LABS 9

https://github.com/Instadapp/fluid-contracts-solana/blob/2475151aa56cba12688d7cdd1f8f319aec797b07/programs/lending/src/utils/helpers.rs#L116-L128

Impact

When the time range since last_update_timestamp crosses a reward period boundary,
the new token exchange price will be calculated using only the most recent reward rate.

Recommendation

The get_rate function should be modified to account for the last_update_timestamp .

Mitigation Review Log

Fixed in PR39 and PR42.

4.5 Precision Loss and Inflation Attack

Severity: Medium Status: Partially Fixed

Target: Liquidity and Lending Program Category: Precision Issue

Description

When supply/borrow exchange price of the liquidity program is not 1(EXCHANGE_-
PRICES_PRECISION), or token exchange price of lending program f_token_mint is not
1(due to rewards/interest accumulation), an attacker can use the precision loss in the
deposit/withdraw calculation to amplify the exchange price exponentially, or introduce
inconsistencies in accounting between the lending program and liquidity program.

Impact

1. Precision loss in deposit and withdraw IXs of lending program:
• programs/lending/src/utils/deposit.rs#L70-L74

• programs/lending/src/utils/withdraw.rs#L57-L61

For example, if the current token_exchange_price is 3, and a user attempts to
deposit 5 assets via the deposit instruction, precision loss during the calculation of
shares_minted results in only 1 share being issued instead. This causes the user to
suffer precision loss exceeding 1 asset.

2. Precision loss in operate instruction of liquidity program:
Since the operate instruction also calculates new_supply_interest_raw using only
the input asset quantity, it suffers from the same precision loss issue.

3. Risk of inflation attack: When a pool is newly initialized in the liquidity program with
zero liquidity, the first depositor can exploit these two precision loss issues to donate as-
sets to the pool, artificially inflating the exchange price exponentially. In this scenario,
all subsequent depositors and borrowers will suffer significant precision loss during op-
erations, with most of these losses effectively becoming profits for the attacker.

OFFSIDE LABS 10

https://github.com/Instadapp/fluid-contracts-solana/blob/2475151aa56cba12688d7cdd1f8f319aec797b07/programs/lending/src/utils/deposit.rs#L70-L74
https://github.com/Instadapp/fluid-contracts-solana/blob/2475151aa56cba12688d7cdd1f8f319aec797b07/programs/lending/src/utils/withdraw.rs#L57-L61

4. Accounting inconsistencies caused by precision loss will expose the lending protocol to
deficits risk:
Reward emissions cause the lending program’s token_exchange_price to outpace
the liquidity program’s supply_exchange_price , leading to asymmetric precision
loss where the protocol absorbs more losses than users.
For example, the token_exchange_price of is 4, and supply_exchange_price is
3, a user deposits 8 assets into lending program. During deposit instruction, lend-
ing program mints 2 shares of f_token_mint, but due to precision loss, only 2 of
new_supply_interest_raw is added to the supply position of the lending protocol in
the liquidity program. At the same slot, the user withdraws the 2 shares from lending
program. The lending program needs to withdraw 3 new_supply_interest_raw of
the supply position from the liquidity program to return 8 assets to the user. This will
result in a protocol loss of 3 assets(1 supply_interest_raw).

Recommendation

1. After each calculation of shares fromassets, performa reverse calculation to determine
the minimum required assets. Transfer only this minimal amount of assets.

2. Optional: Preemptively mint dead shares (e.g., 1000) during pool initialization to miti-
gate precision-based attacks.

3. Optional: Ensure precision loss during asset conversions between multi prices always
falls on users to maximally protect protocol solvency.

Mitigation Review Log

Fluid Team: Added explicit revert if new amount raw ends up 0 for the impact 2. here:
PR-55

Inflating exchange price of the impact 4. should not be possible especially not after the
above additional check. Also, for all our protocols we always create the first position which
stays there permanently do resolve all these kind of possible scenarios.

Putting the other impacts in our lower priority hardenings task list to think about deeper
later on for now.

4.6 Incorrect DivisionMath Library

Severity: Low Status: Fixed

Target: Library Category: Math Error

Description

Themath library introduces two divisionmethods: ceil_div and floor_div . However,
the implementation overlooks whether the quotient is positive or negative, which results in

OFFSIDE LABS 11

https://github.com/Instadapp/fluid-contracts-solana/pull/55/commits/f6c89def3f628abd465c42b44e9b8f363daffdb9

incorrect calculations in certain cases.

17 fn checked_ceil_div(&self, rhs: $t) -> Option<$t> {

18 let quotient = self.checked_div(rhs)?;

19
20 let remainder = self.checked_rem(rhs)?;

21
22 if remainder > <$t>::zero() {

23 quotient.checked_add(<$t>::one())

24 } else {

25 Some(quotient)

26 }

27 }

programs/library/src/math/ceil_div.rs#L17-L27

For the input 8.checked_ceil_div(-3) , the expected result is -2 , but the function in-
correctly calculates -1 .

As a baseline, the following tests in examples only have 50% pass rate.

https://doc.rust-lang.org/std/primitive.i32.html#method.div_ceil

https://doc.rust-lang.org/std/primitive.i32.html#method.div_floor

Impact

This flawed division implementation can lead to incorrect calculations. While the current
codebase may not trigger these cases, the issue leaves room for potential future bugs and
logic errors, especially when extended to other contexts.

Recommendation

Update the implementation to consider the sign of the quotient during the calculation.

Mitigation Review Log

Fixed in commit 9bea6051f8923799129eb7c0664625b87a7a837d and
844bd43d662130c58bc60922518d5d9895a83264.

4.7 NotSet Status Should be Blocked in Operate IX

Severity: Low Status: Fixed

Target: Liquidity Program Category: Logic Error

OFFSIDE LABS 12

https://github.com/Instadapp/fluid-contracts-solana/blob/2475151aa56cba12688d7cdd1f8f319aec797b07/programs/library/src/math/ceil_div.rs#L17-L27
https://doc.rust-lang.org/std/primitive.i32.html#method.div_ceil
https://doc.rust-lang.org/std/primitive.i32.html#method.div_floor

Description

The operate instruction only checks if the user supply/borrow positions are paused. It
should also check if the user positions are in NotSet status.

Recommendation

If the configs of user positions are not set, the operation should be blocked.

Mitigation Review Log

Fixed in commit 6c3b46d3a1a23b075396b13ca5420313748e72aa.

4.8 Different Token Programs ofmint and f_token_mintMay Lead to DoS

Severity: Low Status: Fixed

Target: Lending Program Category: DoS risk

Description

In the init_lending instruction, there is no restriction ensuring that the f_token_mint

uses the same token program as mint .

51 #[account(mut)]

52 pub mint: InterfaceAccount<'info, Mint>,

53
54 #[account(

55 init,

56 seeds = [F_TOKEN_MINT_SEED, mint.key().as_ref()],

57 bump,

58 payer = signer,

59 mint::decimals = mint.decimals,

60 mint::authority = lending_admin,

61 mint::token_program = token_program,

62)]

63 pub f_token_mint: Box<InterfaceAccount<'info, Mint>>,

programs/lending/src/state/context.rs#L51-L63

During initialization, the f_token_mint can be created using a different token program
than mint . However, in subsequent user instructions, both mint and f_token_mint

are expected to use the same token program.

OFFSIDE LABS 13

https://github.com/Instadapp/fluid-contracts-solana/blob/2475151aa56cba12688d7cdd1f8f319aec797b07/programs/lending/src/state/context.rs#L51-L63

Impact

If the f_token_mint was initialized with a different token program, operations such as
mint , burn , or transfer will fail due to an ownership mismatch between the token
programs.

Recommendation

Consider the following solutions:

1. Ensure f_token_mint uses the same token program as mint .
2. Pass two token programs in user instructions

Mitigation Review Log

Fixed in commit 56ccd1d5fabfc858444625ec1e26eb0d2d7a12c7.

4.9 Informational andUndetermined Issues

unpause_user IX Can Skip User Position ConfigNotSet Status

Severity: Informational Status: Fixed

Target: Liquidity Program Category: Logic Error

If a user position of UserSupplyPositionStatus::NotSet status is paused, when calling
the unpause_user instruction, the status will be set to Active without setting config.

programs/liquidity/src/module/admin.rs#L747-L748

It’s recommended to check the status is UserSupplyPositionStatus::Active when paus-
ing a user position in the pause_user instruction.

Operate.protocol CanNot beMutable

Severity: Informational Status: Fixed

Target: Liquidity Program Category: Data Validation

The lending program uses the lending account as the protocol account for liquidity
program. Since the lending account is an initialized PDA assigned to the lending program,
this account cannot be modified by any CPI other than the lending program itself. There-
fore, the mut constraint on the protocol account in the operate instruction of the
liquidity program should be removed.

OFFSIDE LABS 14

https://github.com/Instadapp/fluid-contracts-solana/blob/2475151aa56cba12688d7cdd1f8f319aec797b07/programs/liquidity/src/module/admin.rs#L747-L748

Source TokenAccount of RebalanceMust be Pre-initialized

Severity: Informational Status: Fixed

Target: Lending Program Category: Data Validation

The depositor_token_account of Rebalance ix is the source token account of
the assets_delta transaction. It must be initialized before calling the instruction if
assets_delta is not zero.

So the init_if_needed constraint here is improper:

448 #[account(

449 init_if_needed,

450 payer = signer,

451 associated_token::mint = mint,

452 associated_token::authority = signer,

453 associated_token::token_program = token_program

454)]

455 pub depositor_token_account: Box<InterfaceAccount<'info,

TokenAccount>>,↪

programs/lending/src/state/context.rs#L448-L455

Overly RestrictiveMIN_TOKEN_DECIMALS

Severity: Informational Status: Acknowledged

Target: Liquidity Program Category: Logic Error

The current MIN_TOKEN_DECIMALS is 6. But many mainstream meme coins commonly
have fewer than 6 decimals. For example, Bonk has decimals of 5: https://solscan.io/t
oken/DezXAZ8z7PnrnRJjz3wXBoRgixCa6xjnB7YaB1pPB263

CPI Error CanNot be Captured

Severity: Informational Status: Acknowledged

Target: Lending Program Category: Logic Error

Several code snippets attempt to handle CPI errors, but these errors are not propagated
and cannot be captured during SVM execution. An example of such a code snippet is as
follows:

programs/lending/src/invokes/liquidity_layer.rs#L52-L59

OFFSIDE LABS 15

https://github.com/Instadapp/fluid-contracts-solana/blob/2475151aa56cba12688d7cdd1f8f319aec797b07/programs/lending/src/state/context.rs#L448-L455
https://solscan.io/token/DezXAZ8z7PnrnRJjz3wXBoRgixCa6xjnB7YaB1pPB263
https://solscan.io/token/DezXAZ8z7PnrnRJjz3wXBoRgixCa6xjnB7YaB1pPB263
https://github.com/Instadapp/fluid-contracts-solana/blob/2475151aa56cba12688d7cdd1f8f319aec797b07/programs/lending/src/invokes/liquidity_layer.rs#L52-L59

5 Disclaimer

This audit report is provided for informational purposes only and is not intended to be used
as investment advice. While we strive to thoroughly review and analyze the smart contracts
in question, we must clarify that our services do not encompass an exhaustive security exam-
ination. Our audit aims to identify potential security vulnerabilities to the best of our ability,
but it does not serve as a guarantee that the smart contracts are completely free from security
risks.

We expressly disclaim any liability for any losses or damages arising from the use of this re-
port or from any security breaches that may occur in the future. We also recommend that our
clients engage in multiple independent audits and establish a public bug bounty program as
additional measures to bolster the security of their smart contracts.

It is important to note that the scope of our audit is limited to the areas outlined within our en-
gagement and does not include every possible risk or vulnerability. Continuous security prac-
tices, including regular audits and monitoring, are essential for maintaining the security of
smart contracts over time.

Please note: we are not liable for any security issues stemming from developer errors or mis-
configurations at the time of contract deployment; we do not assume responsibility for any
centralized governance risks within the project; we are not accountable for any impact on the
project’s security or availability due to significant damage to the underlying blockchain infras-
tructure.

By using this report, the client acknowledges the inherent limitations of the audit process and
agrees that our firm shall not be held liable for any incidents thatmay occur subsequent to our
engagement.

This report is considered null and void if the report (or any portion thereof) is altered in any
manner.

OFFSIDE LABS 16

OFFSIDE LABS

https://offside.io/

https://github.com/offsidelabs

https://twitter.com/offside_labs

https://offside.io/
https://github.com/offsidelabs
https://twitter.com/offside_labs

	About Offside Labs
	Executive Summary
	Summary of Findings
	Key Findings and Recommendations
	Precision Error in supply_ratio May Lead to DoS
	Token Reserve Should be Updated Before Config Updated
	Lack of Rate Update in UpdateRewardsRateModel IX
	Token Exchange Price Will be Incorrect When Update Time Range Crosses Reward Period Boundary
	Precision Loss and Inflation Attack
	Incorrect Division Math Library
	NotSet Status Should be Blocked in Operate IX
	Different Token Programs of mint and f_token_mint May Lead to DoS
	Informational and Undetermined Issues

	Disclaimer

